Home
Class 12
MATHS
Can anyone prove int(-pi/2)^(pi/2)(log...

Can anyone prove `int_(-pi/2)^(pi/2)(log(1 +bsinx)/sinx)dx` = `pisin^-1b`, where `|b|`<1.

Text Solution

Verified by Experts

The correct Answer is:
`(1)/(b)`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    FIITJEE|Exercise SOLVED PROBLEMS (OBJECTIVE)|29 Videos
  • DEFINITE INTEGRAL

    FIITJEE|Exercise EXERCISE 1:|4 Videos
  • DEFINITE INTEGRAL

    FIITJEE|Exercise NUMERICAL BASED|3 Videos
  • COMPLEX NUMBER

    FIITJEE|Exercise NUMERICAL BASED|3 Videos
  • DETERMINANT

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

Can anyone prove int_(-(pi)/(2))^((pi)/(2))((log(1+b sin x))/(sin x))dx=pi sin^(-1)b, where |b|<1

int_(-pi/2)^(pi/2)(1+sin^2x)/(1+pi^(sinx))dx=

Evaluate int_(-pi/2)^(pi/2) log((2-sinx)/(2+sinx))dx

int_(-pi/4)^(pi/4) log((2 - sinx)/(2 + sinx)) dx=

int _(-pi/2)^(pi/2)log((2-sin x)/(2+sinx))dx is equal to

int_(pi/3)^(pi/2) sinx dx

Evaluate: int_(-pi//2)^(pi//2)1/(1+e^(sinx))dx

int_(0)^(pi//2)log ((1+ sinx)/ (1+ cos x )) dx=

int_(-pi)^(pi) (2x(1+ sinx))/(1+ cos^(2)x)dx is

The value of int_(-pi/2)^(pi/2) ((1+sin^(2)x)/(1 +pi^(sinx))) dx is