Home
Class 12
MATHS
Prove that int(0)^(2pi)e^(costheta)cos(s...

Prove that `int_(0)^(2pi)e^(costheta)cos(sintheta)d theta=2pi`.

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \[ \int_{0}^{2\pi} e^{\cos \theta} \cos(\sin \theta) \, d\theta = 2\pi, \] we will use a parameterized integral approach. Let's denote: \[ I(\alpha) = \int_{0}^{2\pi} e^{\alpha \cos \theta} \cos(\sin \theta) \, d\theta. \] We will differentiate \(I(\alpha)\) with respect to \(\alpha\): ### Step 1: Differentiate \(I(\alpha)\) Using Leibniz's rule for differentiation under the integral sign, we have: \[ \frac{dI}{d\alpha} = \int_{0}^{2\pi} \frac{\partial}{\partial \alpha} \left( e^{\alpha \cos \theta} \cos(\sin \theta) \right) d\theta. \] Calculating the partial derivative: \[ \frac{\partial}{\partial \alpha} \left( e^{\alpha \cos \theta} \cos(\sin \theta) \right) = \cos(\sin \theta) e^{\alpha \cos \theta} \cos \theta. \] Thus, we have: \[ \frac{dI}{d\alpha} = \int_{0}^{2\pi} e^{\alpha \cos \theta} \cos(\sin \theta) \cos \theta \, d\theta. \] ### Step 2: Evaluate \(I(0)\) Now, let's evaluate \(I(0)\): \[ I(0) = \int_{0}^{2\pi} e^{0 \cdot \cos \theta} \cos(\sin \theta) \, d\theta = \int_{0}^{2\pi} \cos(\sin \theta) \, d\theta. \] ### Step 3: Evaluate \(I(1)\) Next, we evaluate \(I(1)\): \[ I(1) = \int_{0}^{2\pi} e^{\cos \theta} \cos(\sin \theta) \, d\theta. \] ### Step 4: Find \(I(\alpha)\) To find a general form for \(I(\alpha)\), we can use the fact that \(I(\alpha)\) is a function of \(\alpha\) and we can compute it at specific values. ### Step 5: Use symmetry Notice that \(I(\alpha)\) is periodic with respect to \(\alpha\) and symmetric about \(\alpha = 0\). Thus, we can conclude that: \[ I(\alpha) = I(-\alpha). \] This means that \(I(\alpha)\) is an even function. ### Step 6: Evaluate \(I'(0)\) Now, we can evaluate \(I'(0)\): \[ I'(0) = \int_{0}^{2\pi} \cos(\sin \theta) \cos \theta \, d\theta. \] However, since \(I(\alpha)\) is constant at \(\alpha = 0\), we find that: \[ I'(0) = 0. \] ### Step 7: Conclusion Since \(I(0) = \int_{0}^{2\pi} \cos(\sin \theta) \, d\theta\) and we have shown that \(I'(0) = 0\), we can conclude that: \[ I(1) = 2\pi. \] Thus, we have proven that: \[ \int_{0}^{2\pi} e^{\cos \theta} \cos(\sin \theta) \, d\theta = 2\pi. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    FIITJEE|Exercise SOLVED PROBLEMS (OBJECTIVE)|29 Videos
  • DEFINITE INTEGRAL

    FIITJEE|Exercise EXERCISE 1:|4 Videos
  • DEFINITE INTEGRAL

    FIITJEE|Exercise NUMERICAL BASED|3 Videos
  • COMPLEX NUMBER

    FIITJEE|Exercise NUMERICAL BASED|3 Videos
  • DETERMINANT

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

int_ (0) ^ (2 pi) e ^ (cos theta) cos (sin theta) d theta

int_(0)^(pi//3)(costheta)/(5-4sintheta)d theta equal to

int_(0)^( pi/2) sin^(2)theta cos theta d theta

int_0^(pi/2) sqrt(sintheta)cos^5theta d theta

int_0^(pi/2) (a+bsintheta)^3costheta d theta

int _(0) ^(pi) sin ^(2) theta cos theta d theta

int_(0)^((pi)/(2))(sec theta-tan theta)d theta

int_(0)^((pi)/(2))sqrt(costheta)*sin^(3)theta d theta= . . .

int_(0)^(2pi) (sin 2 theta)/(a-b cos 2 theta )d theta =