Home
Class 12
MATHS
Let the function f be defined by f (x)...

Let the function f be defined by
`f (x) = |x-1| -1/2, 0 le x le 2, f (x +2 ) = f (x)` for all `x in R.`
Evaluate `(i) int _(0) ^(100) f (x) dx`
(ii) ` int _(0) ^(1)| f(2x ) |dx`

Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    FIITJEE|Exercise SOLVED PROBLEMS (OBJECTIVE)|29 Videos
  • DEFINITE INTEGRAL

    FIITJEE|Exercise EXERCISE 1:|4 Videos
  • DEFINITE INTEGRAL

    FIITJEE|Exercise NUMERICAL BASED|3 Videos
  • COMPLEX NUMBER

    FIITJEE|Exercise NUMERICAL BASED|3 Videos
  • DETERMINANT

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

int _(0) ^(2a) f (x) dx = int _(0) ^(a) f (x) dx + int _(0)^(a) f (2a -x ) dx

prove that : int_(0)^(2a) f(x)dx = int_(0)^(a) f(x)dx + int_(0)^(a)f(2a-x)dx

If f(a-x)=f(x) and int_(0)^(a//2)f(x)dx=p , then : int_(0)^(a)f(x)dx=

Let a function f:R to R be defined as f (x) =x+ sin x. The value of int _(0) ^(2pi)f ^(-1)(x) dx will be:

If f(x)=x(x-1), 0 le x le 1, and f(x+1)=f(x) AA x in R , then |int_(2)^(4)f(x)dx| is _____________

Let f : R to R be continuous function such that f (x) + f (x+1) = 2, for all x in R. If I _(1) int_(0) ^(8) f (x) dx and I _(2) = int _(-1) ^(3) f (x) dx, then the value of I _(2) +2 I _(2) is equal to "________"

if f(x)=|x-1| then int_(0)^(2)f(x)dx is

f(x) = {(1-2x", for " x le0),(1+2x", for "xgt0):} then int_(-1) ^(1) f(x) dx=

If f(0)=2, f'(x) =f(x), phi (x) = x+f(x) then int_(0)^(1) f(x) phi (x) dx is