Home
Class 12
MATHS
If f(x)=int(x)^(x^(2))(dt)/((logt)^(2)),...

If `f(x)=int_(x)^(x^(2))(dt)/((logt)^(2)),xne0` then `f(x)` is

A

monotonically increasing in `(2,oo)`

B

monotonically decreasing in (1, 2)

C

monotonically decreasing in `(2,oo)`

D

monotonically decreasing in (0, 1)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function defined by the integral: \[ f(x) = \int_{x}^{x^2} \frac{dt}{(\log t)^2}, \quad x \neq 0 \] ### Step 1: Differentiate \( f(x) \) To find the behavior of \( f(x) \), we will differentiate it using the Leibniz rule for differentiation under the integral sign: \[ f'(x) = \frac{d}{dx} \left( \int_{x}^{x^2} \frac{dt}{(\log t)^2} \right) \] According to the Leibniz rule, we have: \[ f'(x) = \frac{d}{dx}(x^2) \cdot \frac{1}{(\log(x^2))^2} - \frac{d}{dx}(x) \cdot \frac{1}{(\log x)^2} \] ### Step 2: Calculate the derivatives Calculating the derivatives: 1. The derivative of \( x^2 \) is \( 2x \). 2. The derivative of \( x \) is \( 1 \). Thus, we can write: \[ f'(x) = 2x \cdot \frac{1}{(\log(x^2))^2} - \frac{1}{(\log x)^2} \] ### Step 3: Simplify \( f'(x) \) Now we simplify \( f'(x) \): Using the property of logarithms, \( \log(x^2) = 2 \log x \), we have: \[ f'(x) = 2x \cdot \frac{1}{(2 \log x)^2} - \frac{1}{(\log x)^2} \] This simplifies to: \[ f'(x) = \frac{2x}{4 (\log x)^2} - \frac{1}{(\log x)^2} = \frac{x}{2 (\log x)^2} - \frac{1}{(\log x)^2} \] Combining the terms gives: \[ f'(x) = \frac{x - 2}{2 (\log x)^2} \] ### Step 4: Analyze the sign of \( f'(x) \) To determine where \( f'(x) \) is positive or negative, we analyze: \[ f'(x) = \frac{x - 2}{2 (\log x)^2} \] 1. The denominator \( 2(\log x)^2 \) is always positive for \( x > 1 \). 2. The numerator \( x - 2 \) is positive when \( x > 2 \). Thus, \( f'(x) > 0 \) when \( x > 2 \). ### Conclusion Since \( f'(x) > 0 \) for \( x > 2 \), we conclude that \( f(x) \) is monotonically increasing for \( x > 2 \). ### Final Answer Thus, the correct option is that \( f(x) \) is monotonically increasing for \( x > 2 \). ---
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    FIITJEE|Exercise EXERCISE 1:|4 Videos
  • DEFINITE INTEGRAL

    FIITJEE|Exercise EXERCISE 2:|3 Videos
  • DEFINITE INTEGRAL

    FIITJEE|Exercise SOLVED PROBLEMS (SUBJECTIVE)|12 Videos
  • COMPLEX NUMBER

    FIITJEE|Exercise NUMERICAL BASED|3 Videos
  • DETERMINANT

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

If f(x)=int_(1)^(x)(logt)/(1+t+t^(2)) , AAx ge 1 , then f(2) is equal to

If f(x)=log|2x|,xne0 then f'(x) is equal to

f(x)=log_(e)|x|,xne0, then f'(x) is equal to

If f(x)=int_(0)^(x)tf(t)dt+2, then

Let f(x)=int_(0)^(x)cos((t^(2)+2t+1)/(5))dt0>x>2 then f(x)

If f(x)= int_(x^2)^(x^(2) +4) e^(-t^(2) ) dt , then the function f(x) increases in

If y=int_(x^(2))^(x^(3))1/(logt)dt(xgt0) , then find (dy)/(dx)

If f(x)=int_(1)^(x)(logt)(1+t+t^(2))dt AAxge1 , then prove that f(x)=f(1/x) .

If f(x)=int_(0)^(x)(dt)/((f(t))^(2)) and int_(0)^(2)(dt)/((f(t))^(2))=(6)^((1)/(3)) then

FIITJEE-DEFINITE INTEGRAL -SOLVED PROBLEMS (OBJECTIVE)
  1. int(0)^(pi)(1)/(a^(2)-2acosx+1)dx,agt1 is equal to

    Text Solution

    |

  2. If f:RrarrR,f(x) is a differentiable function such that (f(x))^(2)=e...

    Text Solution

    |

  3. If 1=int0^(pi/2)(dx)/(sqrt(1+sin^3x)) then

    Text Solution

    |

  4. Let f(x)=int(2)^(x)f(t^(2)-3t+4)dt. Then

    Text Solution

    |

  5. If f(x)=int(x)^(x^(2))(dt)/((logt)^(2)),xne0 then f(x) is

    Text Solution

    |

  6. Let f:RrarrR be a continuous and bijective function defined such that ...

    Text Solution

    |

  7. Let f:RrarrR be a continuous and bijective function defined such that ...

    Text Solution

    |

  8. Let f:RrarrR be a continuous and bijective function defined such that ...

    Text Solution

    |

  9. The value of the integral int(0)^(npi+v)|sinx|dx" where "ninNand0levle...

    Text Solution

    |

  10. the value of int0^1 e^(2x-[2x]) d(x-[x])

    Text Solution

    |

  11. If f(x)=int1^x(lnt)/(1+t)dt, then

    Text Solution

    |

  12. If int(0)^(x^(2)(1+x))f(t)dt=x, then the value of 25f(2) must be.

    Text Solution

    |

  13. If (pi)/(2)ltalphalt(2pi)/(3)andl=int(0)^(sin2alpha)(dx)/(sqrt(4cos^(2...

    Text Solution

    |

  14. Let f: RvecR be a continuous function which satisfies f(x)= int0^xf(t...

    Text Solution

    |

  15. If I(n)=int(0)^(1)(1+x+x^(2)+....+x^(n-1))(1+3x+5x^(2)+....+(2n-3)x^(n...

    Text Solution

    |

  16. Match the following:

    Text Solution

    |

  17. int(0)^(oo)e^(-x^(2))dx=(sqrtpi)/(2) then

    Text Solution

    |

  18. Which of the following is correct combination?

    Text Solution

    |

  19. Which of the following is correct combination?

    Text Solution

    |

  20. Which of the following is not correct combination?

    Text Solution

    |