Home
Class 12
MATHS
The value of the integral int(0)^(npi+v)...

The value of the integral `int_(0)^(npi+v)|sinx|dx" where "ninNand0levlepi` is

A

`(2n+1-sinv)`

B

`(2n-1-cosv)`

C

`(2n+1-cosv)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{n\pi + v} |\sin x| \, dx \), where \( n \in \mathbb{N} \) and \( 0 \leq v \leq \pi \), we will break down the integral into manageable parts. ### Step-by-Step Solution: 1. **Break the Integral into Parts**: Since \( |\sin x| \) is periodic with a period of \( 2\pi \), we can break the integral into two parts: \[ I = \int_{0}^{v} |\sin x| \, dx + \int_{v}^{n\pi + v} |\sin x| \, dx \] 2. **Evaluate the First Integral**: For the first integral from \( 0 \) to \( v \), since \( v \) is between \( 0 \) and \( \pi \), \( |\sin x| = \sin x \) in this interval: \[ \int_{0}^{v} |\sin x| \, dx = \int_{0}^{v} \sin x \, dx \] The integral of \( \sin x \) is: \[ -\cos x \bigg|_{0}^{v} = -\cos v + \cos 0 = 1 - \cos v \] 3. **Evaluate the Second Integral**: For the second integral from \( v \) to \( n\pi + v \), we need to determine how many complete periods of \( 2\pi \) fit into this range. The integral can be expressed as: \[ \int_{v}^{n\pi + v} |\sin x| \, dx = \int_{v}^{2\pi + v} |\sin x| \, dx + \int_{2\pi + v}^{n\pi + v} |\sin x| \, dx \] The integral \( \int_{v}^{2\pi + v} |\sin x| \, dx \) can be computed as follows: - From \( v \) to \( 2\pi \), \( |\sin x| = -\sin x \) (since \( \sin x \) is negative in this range). - From \( 2\pi \) to \( 2\pi + v \), \( |\sin x| = \sin x \). Thus, we have: \[ \int_{v}^{2\pi + v} |\sin x| \, dx = -\int_{v}^{2\pi} \sin x \, dx + \int_{2\pi}^{2\pi + v} \sin x \, dx \] 4. **Calculate the Integral Over One Period**: The integral over one complete period \( [0, 2\pi] \) is: \[ \int_{0}^{2\pi} |\sin x| \, dx = 2 \int_{0}^{\pi} \sin x \, dx = 2 \cdot (1 - 0) = 2 \] 5. **Combine the Results**: The integral from \( 0 \) to \( n\pi + v \) can be computed as: \[ I = (n \text{ complete periods}) \cdot 2 + (1 - \cos v) + \text{(additional parts)} \] The additional parts will depend on the specific value of \( v \) and how it fits into the periodic structure. 6. **Final Expression**: After evaluating all parts, we can express the final value of the integral as: \[ I = 2n + 1 - \cos v \] ### Final Answer: The value of the integral \( \int_{0}^{n\pi + v} |\sin x| \, dx \) is: \[ I = 2n + 1 - \cos v \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    FIITJEE|Exercise EXERCISE 1:|4 Videos
  • DEFINITE INTEGRAL

    FIITJEE|Exercise EXERCISE 2:|3 Videos
  • DEFINITE INTEGRAL

    FIITJEE|Exercise SOLVED PROBLEMS (SUBJECTIVE)|12 Videos
  • COMPLEX NUMBER

    FIITJEE|Exercise NUMERICAL BASED|3 Videos
  • DETERMINANT

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_(0)^(pi) | sin 2x| dx is

int_(0)^(2pi)|sinx|dx=?

The value of the integral int_(0)^(pi)(1-|sin 8x|)dx is

The value of the integral int_(0)^(2)x[x]dx

The value of the integral int_(0)^(pi)x log sin x dx is

The value of integral int_(0)^( pi)xf(sin x)dx=

The value of the integral int_(0)^(2)|x^(2)-1|dx is

The value of the integral int_(0)^(pi//2)log |tanx| dx is

The value of the integral int_(0)^(pi//4) sin^(-4)x dx , is

The value of the integral int_(0) ^(pi//2) sin ^3 x dx is :

FIITJEE-DEFINITE INTEGRAL -SOLVED PROBLEMS (OBJECTIVE)
  1. int(0)^(pi)(1)/(a^(2)-2acosx+1)dx,agt1 is equal to

    Text Solution

    |

  2. If f:RrarrR,f(x) is a differentiable function such that (f(x))^(2)=e...

    Text Solution

    |

  3. If 1=int0^(pi/2)(dx)/(sqrt(1+sin^3x)) then

    Text Solution

    |

  4. Let f(x)=int(2)^(x)f(t^(2)-3t+4)dt. Then

    Text Solution

    |

  5. If f(x)=int(x)^(x^(2))(dt)/((logt)^(2)),xne0 then f(x) is

    Text Solution

    |

  6. Let f:RrarrR be a continuous and bijective function defined such that ...

    Text Solution

    |

  7. Let f:RrarrR be a continuous and bijective function defined such that ...

    Text Solution

    |

  8. Let f:RrarrR be a continuous and bijective function defined such that ...

    Text Solution

    |

  9. The value of the integral int(0)^(npi+v)|sinx|dx" where "ninNand0levle...

    Text Solution

    |

  10. the value of int0^1 e^(2x-[2x]) d(x-[x])

    Text Solution

    |

  11. If f(x)=int1^x(lnt)/(1+t)dt, then

    Text Solution

    |

  12. If int(0)^(x^(2)(1+x))f(t)dt=x, then the value of 25f(2) must be.

    Text Solution

    |

  13. If (pi)/(2)ltalphalt(2pi)/(3)andl=int(0)^(sin2alpha)(dx)/(sqrt(4cos^(2...

    Text Solution

    |

  14. Let f: RvecR be a continuous function which satisfies f(x)= int0^xf(t...

    Text Solution

    |

  15. If I(n)=int(0)^(1)(1+x+x^(2)+....+x^(n-1))(1+3x+5x^(2)+....+(2n-3)x^(n...

    Text Solution

    |

  16. Match the following:

    Text Solution

    |

  17. int(0)^(oo)e^(-x^(2))dx=(sqrtpi)/(2) then

    Text Solution

    |

  18. Which of the following is correct combination?

    Text Solution

    |

  19. Which of the following is correct combination?

    Text Solution

    |

  20. Which of the following is not correct combination?

    Text Solution

    |