Home
Class 12
MATHS
If int(0)^(x^(2)(1+x))f(t)dt=x, then the...

If `int_(0)^(x^(2)(1+x))f(t)dt=x`, then the value of `25f(2)` must be_________.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the equation: \[ \int_{0}^{x^2(1+x)} f(t) \, dt = x \] We need to find the value of \( 25f(2) \). ### Step 1: Differentiate both sides with respect to \( x \) Using the Fundamental Theorem of Calculus and Leibniz's rule, we differentiate the left-hand side: \[ \frac{d}{dx} \left( \int_{0}^{x^2(1+x)} f(t) \, dt \right) = f(x^2(1+x)) \cdot \frac{d}{dx}(x^2(1+x)) \] And the right-hand side: \[ \frac{d}{dx}(x) = 1 \] ### Step 2: Differentiate \( x^2(1+x) \) Now, we need to differentiate \( x^2(1+x) \): \[ \frac{d}{dx}(x^2(1+x)) = \frac{d}{dx}(x^2 + x^3) = 2x + 3x^2 \] ### Step 3: Set up the equation Now we substitute back into our differentiated equation: \[ f(x^2(1+x)) \cdot (2x + 3x^2) = 1 \] ### Step 4: Solve for \( f(x^2(1+x)) \) From the equation above, we can express \( f(x^2(1+x)) \): \[ f(x^2(1+x)) = \frac{1}{2x + 3x^2} \] ### Step 5: Find \( f(2) \) Next, we need to find \( f(2) \). We need to find \( x \) such that \( x^2(1+x) = 2 \): Let \( x^2(1+x) = 2 \). This simplifies to: \[ x^3 + 2x^2 - 2 = 0 \] ### Step 6: Solve the cubic equation We can try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Now, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] Next, try \( x = 1 \): \[ 1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)} \] ### Step 7: Substitute \( x = 1 \) into \( f(x^2(1+x)) \) We can substitute \( x = 1 \) into our expression for \( f \): \[ f(1^2(1+1)) = f(2) = \frac{1}{2(1) + 3(1^2)} = \frac{1}{2 + 3} = \frac{1}{5} \] ### Step 8: Calculate \( 25f(2) \) Now, we can find \( 25f(2) \): \[ 25f(2) = 25 \cdot \frac{1}{5} = 5 \] Thus, the value of \( 25f(2) \) is: \[ \boxed{5} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    FIITJEE|Exercise EXERCISE 1:|4 Videos
  • DEFINITE INTEGRAL

    FIITJEE|Exercise EXERCISE 2:|3 Videos
  • DEFINITE INTEGRAL

    FIITJEE|Exercise SOLVED PROBLEMS (SUBJECTIVE)|12 Videos
  • COMPLEX NUMBER

    FIITJEE|Exercise NUMERICAL BASED|3 Videos
  • DETERMINANT

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

If int_(0)^(x^(2)(1+x))f(t)dt=x , then the value of f(2) is.

If int_(0)^(x^(2)(1+x))f(t)dt = x then find f(2)

If int_(0)^(x^(3)(1+x))f(t)dt=x then f(2) is equal to

If int_(0)^(x)f(t)dt=x+int_(x)^(1)f(t)dt ,then the value of f(1) is

If f(x)=int_(0)^(x)e^(-t)f(x-t)dt then the value of f(3) is

If int_(0)^(x) f(t)dt=x+int_(x)^(1) t f(t) dt , then the value of f(1), is

If f(x)=1+(1)/(x)int_(1)^(x)f(t)dt, then the value of (e^(-1)) is

If f(x)=x+int_(0)^(1)t(x+t)f(t)dt, then the value of (23)/(2)f(0) is equal to

If f(x)=int_(0)^(x)tf(t)dt+2, then

FIITJEE-DEFINITE INTEGRAL -SOLVED PROBLEMS (OBJECTIVE)
  1. int(0)^(pi)(1)/(a^(2)-2acosx+1)dx,agt1 is equal to

    Text Solution

    |

  2. If f:RrarrR,f(x) is a differentiable function such that (f(x))^(2)=e...

    Text Solution

    |

  3. If 1=int0^(pi/2)(dx)/(sqrt(1+sin^3x)) then

    Text Solution

    |

  4. Let f(x)=int(2)^(x)f(t^(2)-3t+4)dt. Then

    Text Solution

    |

  5. If f(x)=int(x)^(x^(2))(dt)/((logt)^(2)),xne0 then f(x) is

    Text Solution

    |

  6. Let f:RrarrR be a continuous and bijective function defined such that ...

    Text Solution

    |

  7. Let f:RrarrR be a continuous and bijective function defined such that ...

    Text Solution

    |

  8. Let f:RrarrR be a continuous and bijective function defined such that ...

    Text Solution

    |

  9. The value of the integral int(0)^(npi+v)|sinx|dx" where "ninNand0levle...

    Text Solution

    |

  10. the value of int0^1 e^(2x-[2x]) d(x-[x])

    Text Solution

    |

  11. If f(x)=int1^x(lnt)/(1+t)dt, then

    Text Solution

    |

  12. If int(0)^(x^(2)(1+x))f(t)dt=x, then the value of 25f(2) must be.

    Text Solution

    |

  13. If (pi)/(2)ltalphalt(2pi)/(3)andl=int(0)^(sin2alpha)(dx)/(sqrt(4cos^(2...

    Text Solution

    |

  14. Let f: RvecR be a continuous function which satisfies f(x)= int0^xf(t...

    Text Solution

    |

  15. If I(n)=int(0)^(1)(1+x+x^(2)+....+x^(n-1))(1+3x+5x^(2)+....+(2n-3)x^(n...

    Text Solution

    |

  16. Match the following:

    Text Solution

    |

  17. int(0)^(oo)e^(-x^(2))dx=(sqrtpi)/(2) then

    Text Solution

    |

  18. Which of the following is correct combination?

    Text Solution

    |

  19. Which of the following is correct combination?

    Text Solution

    |

  20. Which of the following is not correct combination?

    Text Solution

    |