If `int_(0)^(x^(2)(1+x))f(t)dt=x`, then the value of `25f(2)` must be_________.
If `int_(0)^(x^(2)(1+x))f(t)dt=x`, then the value of `25f(2)` must be_________.
Text Solution
AI Generated Solution
The correct Answer is:
To solve the problem, we start with the equation:
\[
\int_{0}^{x^2(1+x)} f(t) \, dt = x
\]
We need to find the value of \( 25f(2) \).
### Step 1: Differentiate both sides with respect to \( x \)
Using the Fundamental Theorem of Calculus and Leibniz's rule, we differentiate the left-hand side:
\[
\frac{d}{dx} \left( \int_{0}^{x^2(1+x)} f(t) \, dt \right) = f(x^2(1+x)) \cdot \frac{d}{dx}(x^2(1+x))
\]
And the right-hand side:
\[
\frac{d}{dx}(x) = 1
\]
### Step 2: Differentiate \( x^2(1+x) \)
Now, we need to differentiate \( x^2(1+x) \):
\[
\frac{d}{dx}(x^2(1+x)) = \frac{d}{dx}(x^2 + x^3) = 2x + 3x^2
\]
### Step 3: Set up the equation
Now we substitute back into our differentiated equation:
\[
f(x^2(1+x)) \cdot (2x + 3x^2) = 1
\]
### Step 4: Solve for \( f(x^2(1+x)) \)
From the equation above, we can express \( f(x^2(1+x)) \):
\[
f(x^2(1+x)) = \frac{1}{2x + 3x^2}
\]
### Step 5: Find \( f(2) \)
Next, we need to find \( f(2) \). We need to find \( x \) such that \( x^2(1+x) = 2 \):
Let \( x^2(1+x) = 2 \).
This simplifies to:
\[
x^3 + 2x^2 - 2 = 0
\]
### Step 6: Solve the cubic equation
We can try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Now, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
Next, try \( x = 1 \):
\[
1^3 + 2(1^2) - 2 = 1 + 2 - 2 = 1 \quad \text{(not a root)}
\]
### Step 7: Substitute \( x = 1 \) into \( f(x^2(1+x)) \)
We can substitute \( x = 1 \) into our expression for \( f \):
\[
f(1^2(1+1)) = f(2) = \frac{1}{2(1) + 3(1^2)} = \frac{1}{2 + 3} = \frac{1}{5}
\]
### Step 8: Calculate \( 25f(2) \)
Now, we can find \( 25f(2) \):
\[
25f(2) = 25 \cdot \frac{1}{5} = 5
\]
Thus, the value of \( 25f(2) \) is:
\[
\boxed{5}
\]
Topper's Solved these Questions
Similar Questions
Explore conceptually related problems
If int_(0)^(x^(2)(1+x))f(t)dt=x , then the value of f(2) is.
If int_(0)^(x^(2)(1+x))f(t)dt = x then find f(2)
If int_(0)^(x^(3)(1+x))f(t)dt=x then f(2) is equal to
If int_(0)^(x)f(t)dt=x+int_(x)^(1)f(t)dt ,then the value of f(1) is
If f(x)=int_(0)^(x)e^(-t)f(x-t)dt then the value of f(3) is
If int_(0)^(x) f(t)dt=x+int_(x)^(1) t f(t) dt , then the value of f(1), is
If f(x)=1+(1)/(x)int_(1)^(x)f(t)dt, then the value of (e^(-1)) is
If f(x)=x+int_(0)^(1)t(x+t)f(t)dt, then the value of (23)/(2)f(0) is equal to
If f(x)=int_(0)^(x)tf(t)dt+2, then
FIITJEE-DEFINITE INTEGRAL -SOLVED PROBLEMS (OBJECTIVE)
- int(0)^(pi)(1)/(a^(2)-2acosx+1)dx,agt1 is equal to
Text Solution
|
- If f:RrarrR,f(x) is a differentiable function such that (f(x))^(2)=e...
Text Solution
|
- If 1=int0^(pi/2)(dx)/(sqrt(1+sin^3x)) then
Text Solution
|
- Let f(x)=int(2)^(x)f(t^(2)-3t+4)dt. Then
Text Solution
|
- If f(x)=int(x)^(x^(2))(dt)/((logt)^(2)),xne0 then f(x) is
Text Solution
|
- Let f:RrarrR be a continuous and bijective function defined such that ...
Text Solution
|
- Let f:RrarrR be a continuous and bijective function defined such that ...
Text Solution
|
- Let f:RrarrR be a continuous and bijective function defined such that ...
Text Solution
|
- The value of the integral int(0)^(npi+v)|sinx|dx" where "ninNand0levle...
Text Solution
|
- the value of int0^1 e^(2x-[2x]) d(x-[x])
Text Solution
|
- If f(x)=int1^x(lnt)/(1+t)dt, then
Text Solution
|
- If int(0)^(x^(2)(1+x))f(t)dt=x, then the value of 25f(2) must be.
Text Solution
|
- If (pi)/(2)ltalphalt(2pi)/(3)andl=int(0)^(sin2alpha)(dx)/(sqrt(4cos^(2...
Text Solution
|
- Let f: RvecR be a continuous function which satisfies f(x)= int0^xf(t...
Text Solution
|
- If I(n)=int(0)^(1)(1+x+x^(2)+....+x^(n-1))(1+3x+5x^(2)+....+(2n-3)x^(n...
Text Solution
|
- Match the following:
Text Solution
|
- int(0)^(oo)e^(-x^(2))dx=(sqrtpi)/(2) then
Text Solution
|
- Which of the following is correct combination?
Text Solution
|
- Which of the following is correct combination?
Text Solution
|
- Which of the following is not correct combination?
Text Solution
|