Home
Class 12
MATHS
f(x)=sinx+int(-pi//2)^(pi//2)(sinx+tcosx...

`f(x)=sinx+int_(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt`
The range of `f(x)` is

Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE) (LEVEL-II)|10 Videos
  • DEFINITE INTEGRAL

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) (LEVEL-I)|36 Videos
  • DEFINITE INTEGRAL

    FIITJEE|Exercise EXERCISE 8:|6 Videos
  • COMPLEX NUMBER

    FIITJEE|Exercise NUMERICAL BASED|3 Videos
  • DETERMINANT

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

f(x)=sinx+int_(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt The value of int_(0)^(pi//2) f(x)dx is

f(x)=sinx+int_(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt f(x) is not invertible for

f(x) = sin x + int _(- pi //2) ^( pi //2) ( sin x + t cos x) f(t) dt then max value of f (x) :

Consider a real valued continuous function f such that f(x)=sinx + int_(-pi//2)^(pi//2) (sinx+t(f(t))dt . If M and m are maximum and minimum values of function f , then the value of M//m is____________.

f(x)=int_(0)^( pi)f(t)dt=x+int_(x)^(1)tf(t)dt, then the value of f(1) is (1)/(2)

y=f(x) satisfies the relation int_(2)^(x)f(t)dt=(x^(2))/2+int_(x)^(2)t^(2)f(t)dt The range of y=f(x) is

The value of int_(-pi)^(pi) sinx f(cosx)dx is

If f(x)=sin x+int_(0)^((pi)/(2))sin x cos tf(t)dt, then int_(0)^((pi)/(2))f(x)dx=

Find f (x) if f(x)=lambdaint_(0)^(pi//2)sinxcostf(t)dt+sinx where lambda is constant ne 2 .