Home
Class 12
MATHS
Find f (x) if f(x)=lambdaint(0)^(pi//2)s...

Find f (x) if `f(x)=lambdaint_(0)^(pi//2)sinxcostf(t)dt+sinx` where `lambda` is constant `ne 2`.

Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE) (LEVEL-II)|10 Videos
  • DEFINITE INTEGRAL

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) (LEVEL-I)|36 Videos
  • DEFINITE INTEGRAL

    FIITJEE|Exercise EXERCISE 8:|6 Videos
  • COMPLEX NUMBER

    FIITJEE|Exercise NUMERICAL BASED|3 Videos
  • DETERMINANT

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

f(x) satisfies the relation f(x)-lambda int_(0)^( pi/2)sin x*cos tf(t)dt=sin x If lambda>2 then f(x) decreases in

f(x)=sinx+int_(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt The range of f(x) is

f(x)=sinx+int_(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt f(x) is not invertible for

If f(x)=int_(0)^(x)(sin^(4)t+cos^(4)t)dt, then f(x+pi) will be equal to

if f(x) = int_(0)^(x) (t^2+2t+2) dt where x in [2,4] then

Find the points of minima for f(x)=int_(0)^(x)t(t-1)(t-2)dt

If int_(0)^(x^(2)(1+x))f(t)dt = x then find f(2)

Let A={x: 0 le x lt pi//2} and f:R to A be an onto function given by f(x)=tan^(-1)(x^(2)+x+lambda) , where lambda is a constant. Then,

f(x)=sinx+int_(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt The value of int_(0)^(pi//2) f(x)dx is