Home
Class 12
MATHS
If int(ln2)^x(dt)/(sqrt(e^t-1))=pi/6, t...

If `int_(ln2)^x(dt)/(sqrt(e^t-1))=pi/6`, then `x=`

Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE) (LEVEL-II)|10 Videos
  • DEFINITE INTEGRAL

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) (LEVEL-I)|36 Videos
  • DEFINITE INTEGRAL

    FIITJEE|Exercise EXERCISE 8:|6 Videos
  • COMPLEX NUMBER

    FIITJEE|Exercise NUMERICAL BASED|3 Videos
  • DETERMINANT

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

If : int_(ln 2)^(x)(1)/(sqrt(e^(t)-1))dt=(pi)/(6) , then : x =

If int_(1)^(x)(dt)/(|t|sqrt(t^(2)-1))=(pi)/(6) then x can be equal to

If int_(log2)^(x) (1)/(sqrt(e^(x)-1))dx=(pi)/(6) then x is equal to

The solution for x of the equation int_(sqrt(2))^(x)(dt)/(sqrt(t^(2)-1))=(pi)/(2) is pi(b)(sqrt(3))/(2) (c) 2sqrt(2) (d) none of these

The solution for x of the equation int_(sqrt(2))^(x)(dt)/(t sqrt(t^(2)-1))=(pi)/(2) is: (A) 2(B)pi(C)(sqrt(3))/(2) (D) 2sqrt(2)

The solution for x of the equation int_(sqrt(2))^(x)(1)/(tsqrt(t^(2)-1))dt=(pi)/(2) , is

If int_(log" "2)^(x)(du)/((e^(u)-1)^(1//2))=(pi)/(6) , then e^(x) is equal to

The solution for x of the equation int _(sqrt2) ^(x) (dt)/( tsqrt(t ^(2) -1))= (pi)/(12) is