Home
Class 12
MATHS
Prove that int(1)^(e)(lnx)^(4)dx=9e-24....

Prove that `int_(1)^(e)(lnx)^(4)dx=9e-24`.

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE) (LEVEL-II)|10 Videos
  • DEFINITE INTEGRAL

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) (LEVEL-I)|36 Videos
  • DEFINITE INTEGRAL

    FIITJEE|Exercise EXERCISE 8:|6 Videos
  • COMPLEX NUMBER

    FIITJEE|Exercise NUMERICAL BASED|3 Videos
  • DETERMINANT

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

int(1)/(e^(x)4e^(-x))dx=

int_(1)^(e )((log x)^(4))/(x)dx=

int_(1)^(4)(1+x+e^(2x))dx

Prove that int_(0)^(25)e^(x-[x])dx=25(e-1) .

int_(-1)^(1)(e^(x)-e^(-x))dx=

Solve int_(-1)^(1)(e^(x)-e^(-x))dx

int_(-1)^(1)e^(|x|)dx=2(e-1)

int_((1)/(e))^(e)|log x|dx=

int_(1)^(e)e^(x)((1+xlogx)/(x))dx

int_(0)^(1)e^(2x)e^(e^(x) dx =)