Home
Class 12
MATHS
int(0)^(pi//2)(dx)/(1+tanx) is...

`int_(0)^(pi//2)(dx)/(1+tanx)` is

A

a multiple of `pi//4`

B

a multiple of `pi//2`

C

equal to `pi//4`

D

a multiple of `pi`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    FIITJEE|Exercise COMPREHENSION I:|3 Videos
  • DEFINITE INTEGRAL

    FIITJEE|Exercise COMPREHENSION II:|3 Videos
  • DEFINITE INTEGRAL

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) (LEVEL-I)|36 Videos
  • COMPLEX NUMBER

    FIITJEE|Exercise NUMERICAL BASED|3 Videos
  • DETERMINANT

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

int_(0)^((pi)/2)(dx)/(1+(tanx)^(sqrt(2018)))=

int_(0)^(pi//2)(dx)/((1+sqrt(tanx)))=(pi)/(4)

int_(0)^(pi//2)(tanx)/((1+tanx))dx=?

Evaluate the following: int_0^(pi/2) dx/(1+tanx)

int_(0)^(pi//2)(1)/((1+tanx))dx=?

The value of int_(0)^(-pi//4)(1+tanx)/(1-tanx)dx is

The value of the integral int_(0)^(pi//2)(1)/(1+(tanx)^(101))dx is equal to

Evaluate the following : int_(0)^(pi//2)(1)/(1+sqrt(tanx))dx

Statement-1: int_(0)^(pi//2) (1)/(1+tan^(3)x)dx=(pi)/(4) Statement-2: int_(0)^(a) f(x)dx=int_(0)^(a) f(a+x)dx

int_(0)^(pi//2)(dx)/((1+cotx))=(pi)/(4)