Home
Class 12
MATHS
In = int0^(pi/4) tan^n x dx , then the v...

`I_n = int_0^(pi/4) tan^n` x dx , then the value of `n(l_(n-1) + I_(n+1))` is

A

1

B

2

C

`pi//4`

D

`pi`

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    FIITJEE|Exercise COMPREHENSION II:|3 Videos
  • DEFINITE INTEGRAL

    FIITJEE|Exercise NUMERICAL BASED|3 Videos
  • DEFINITE INTEGRAL

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) (LEVEL-II)|15 Videos
  • COMPLEX NUMBER

    FIITJEE|Exercise NUMERICAL BASED|3 Videos
  • DETERMINANT

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

I_(n)=int_(0)^((pi)/(4))tan^(n)xdx, then the value of n(l_(n-1)+I_(n+1)) is

IF I_n=int_0^(pi//4) tan^n x dx then what is I_n+I_(n+2) equal to

If I_(n)=int_(0)^(pi//4) tan^(n) x dx, lim_(n to oo) n(I_(n+1)+I_(n-1)) equals

I_n=int_0^(pi//4) tan^n x dx, then lim_(ntooo) n [I_n + I_(n+2)] is equal to (i)1/2 (ii)1 (iii)infty (iv) 0

If I_(n)=int_(0)^(pi//4)tan^(n)x dx , where n ge 2 , then : I_(n-2)+I_(n)=

If I_(n)=int_(0)^(pi)x^(n)sinxdx , then find the value of I_(5)+20I_(3) .