Home
Class 12
MATHS
If f(x)=int1^x(lnt)/(1+t)dt, then...

If `f(x)=int_1^x(lnt)/(1+t)dt`, then

A

`f((1)/(x))=-int_(1)^(x)(lnt)/(t(1+t))dt`

B

`f((1)/(x))=int_(1)^(x)(lnt)/(t(1+t))dt`

C

`f(x)+f((1)/(x))=0`

D

`f(x)+f((1)/(x))=(1)/(2)(lnx)^(2)`

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    FIITJEE|Exercise COMPREHENSION I:|3 Videos
  • DEFINITE INTEGRAL

    FIITJEE|Exercise COMPREHENSION II:|3 Videos
  • DEFINITE INTEGRAL

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) (LEVEL-I)|36 Videos
  • COMPLEX NUMBER

    FIITJEE|Exercise NUMERICAL BASED|3 Videos
  • DETERMINANT

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

If f(x)=int_(1)^(x)(ln t)/(1+t)dt, then

If f(x) = int_1^x lnt/(1+t) dt where x>0 then the values of x satisfying the equation f(x)+f(1/x) = 2 are (i)2 (ii)e (iii)e^(-2) (iv)e^(2)

If f(x) =int_(x)^(-1) |t|dt , then for any x ge 0 , f(x) equals

If f(x)=int_(1)^(x) (log t)/(1+t) dt"then" f(x)+f((1)/(x)) is equal to

For x>0, let f(x)=int_(1)^(x)(log t)/(1+t)dt. Find the function f(x)+f((1)/(x)) and find the value of f(e)+f((1)/(e))

If f(x)=int_(-1)^(x)|t|dt , then for any x ge0,f(x) is equal to

If f(x)=int_(-1)^(x)|t|dt , then for any xge0,f(x) equals

f(x)=int_1^x lnt/(1+t) dt , f(e)+f(1/e)=