Home
Class 12
MATHS
If the integral l(n)=int(0)^(pi//4)tan^(...

If the integral `l_(n)=int_(0)^(pi//4)tan^(n)xdx` is reduced to its lower integrals like `l_(n-1),l_(n-2)` etc.,
The value of `(l_(3)+2l_(5))/(l_(1))` is

A

1

B

2

C

`pi//4`

D

`pi`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    FIITJEE|Exercise COMPREHENSION II:|3 Videos
  • DEFINITE INTEGRAL

    FIITJEE|Exercise NUMERICAL BASED|3 Videos
  • DEFINITE INTEGRAL

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) (LEVEL-II)|15 Videos
  • COMPLEX NUMBER

    FIITJEE|Exercise NUMERICAL BASED|3 Videos
  • DETERMINANT

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

If the integral l_(n)=int_(0)^(pi//4)tan^(n)xdx is reduced to its lower integrals like l_(n-1),l_(n-2) etc., Then l_(2)+l_(4),l_(3)+l_(5)andl_(4)+l_(6) are in

If l_(n)=int_(0)^(pi//4) tan^(n)x dx, n in N "then" I_(n+2)+I_(n) equals

l_(n)=int_(0)^(pi//4)tan^(n)xdx , then lim_(nto oo)n[l_(n)+l_(n-2)] equals

The value of the integral l = int_(0)^(1) x(1-x)^(n) dx is

If m, n in N , then l_(m n) = int_(0)^(1) x^(m) (1-x)^(n) dx is equal to

I_(n)=int_(0)^((pi)/(4))tan^(n)xdx, then the value of n(l_(n-1)+I_(n+1)) is

Evaluate l_(n)= int (dx)/((x^(2)+a^(2))^(n)) .

If l_(n)=int_(0)^((pi)/(4)) tan^(n) xdx show that (1)/(l_(2)+l_(4)),(1)/(l_(3)+l_(5)),(1)/(l_(4)+l_(6)),(1)/(l_(5)+l_(7)),"...." from an AP. Find its common difference.