Home
Class 12
MATHS
A variable chord PQ of the parabola y^(2...

A variable chord PQ of the parabola `y^(2)=4ax` is drawn parallel to the line y = x if the parameter of the points P and Q on the parabola be `t_(1)andt_(2)` respectively and then prove that `t_(1)+t_(2)=2`. Also show that the locus of the point of intersection of the normals at P and Q is 2x - y = 12a.

Promotional Banner

Topper's Solved these Questions

  • PARABOLA

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE LEVEL - I)|50 Videos
  • PARABOLA

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE LEVEL - II)|20 Videos
  • PARABOLA

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE LEVEL - I)(FILL IN THE BLANKS)|5 Videos
  • MATRICES

    FIITJEE|Exercise NUMERICAL BASED|3 Videos
  • PERMUTATIONS & COMBINATIONS

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

A variable chord PQ of the parabola y^(2) = 4x is drawn parallel to the line y = x. If the parameters of the points P & Q on the parabola are p & q respectively, show that p + q = 2. Also show that the locus of the point of intersection of the normals at P & Q is 2x - y = 12.

A variable chord PQ of the parabola y^(2)=4x is down parallel to the line y=x. If the parameters of the points y=x .If the parabola be p and q respectively then p+q is equal to:

If a chord PQ of the parabola y^(2)=4ax subtends a right angle at the vertex,show that the locus of the point of intersection of the normals at P and Q is y^(2)=16a(x-6a)

For the variable t, the locus of the points of intersection of lines x-2y=t and x+2y=(1)/(t) is

The normal at t_(1) and t_(2) on the parabola y^(2)=4ax intersect on the curve then t_(1)t_(2)

The ordinates of points P and Q on the parabola y^2=12x are in the ration 1:2 . Find the locus of the point of intersection of the normals to the parabola at P and Q.

If line x-2y-1=0 intersects parabola y^(2)=4x at P and Q, then find the point of intersection of normals at P and Q.