Home
Class 12
MATHS
If the line y = mx + sqrt(a^(2)m^(2) - b...

If the line `y = mx + sqrt(a^(2)m^(2) - b^(2)) ` touches the hyperbola `x^(2)/a^(2) - y^(2)/b^(2) = 1` at the point `(a sec theta, b tan theta)`, then find `theta` .

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the angle \( \theta \) given that the line \( y = mx + \sqrt{a^2 m^2 - b^2} \) touches the hyperbola \( \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \) at the point \( (a \sec \theta, b \tan \theta) \). ### Step-by-Step Solution: 1. **Identify the Point on the Hyperbola:** The point \( (a \sec \theta, b \tan \theta) \) must satisfy the hyperbola equation: \[ \frac{(a \sec \theta)^2}{a^2} - \frac{(b \tan \theta)^2}{b^2} = 1 \] Simplifying this gives: \[ \sec^2 \theta - \tan^2 \theta = 1 \] This is a known trigonometric identity, confirming that the point lies on the hyperbola. 2. **Equation of the Tangent to the Hyperbola:** The equation of the tangent to the hyperbola at the point \( (a \sec \theta, b \tan \theta) \) can be expressed as: \[ \frac{a \sec \theta}{a^2} x - \frac{b \tan \theta}{b^2} y = 1 \] Simplifying this gives: \[ \sec \theta \cdot x - \frac{\tan \theta}{b} \cdot y = 1 \] 3. **Rearranging the Tangent Equation:** Rearranging the equation gives: \[ y = \frac{b \tan \theta}{a \sec \theta} x - b \] This can be rewritten as: \[ y = \frac{b}{a \sin \theta} x - b \cot \theta \] 4. **Comparing with the Given Line:** The line given is: \[ y = mx + \sqrt{a^2 m^2 - b^2} \] For the two equations to represent the same line, their slopes must be equal: \[ m = \frac{b}{a \sin \theta} \] And their y-intercepts must also be equal: \[ \sqrt{a^2 m^2 - b^2} = -b \cot \theta \] 5. **Finding \( \theta \):** From the slope equation: \[ \sin \theta = \frac{b}{a m} \] Taking the inverse sine gives: \[ \theta = \sin^{-1}\left(\frac{b}{a m}\right) \] ### Final Answer: Thus, the value of \( \theta \) is: \[ \theta = \sin^{-1}\left(\frac{b}{a m}\right) \]
Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    FIITJEE|Exercise ASSIGNMENT PROBLEMS ( SUBJECTIVE) Level - II|11 Videos
  • HYPERBOLA

    FIITJEE|Exercise ASSIGNMENT PROBLEMS ( OBJECTIVE) Level - I|47 Videos
  • HYPERBOLA

    FIITJEE|Exercise Exercise - 3|6 Videos
  • HEIGHTS & DISTANCE

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-II|20 Videos
  • INDEFINTE INTEGRAL

    FIITJEE|Exercise EXERCISE-8|1 Videos

Similar Questions

Explore conceptually related problems

If the line y = mx + sqrt(a^(2) m^(2) -b^(2)), m = (1)/(2) touches the hyperbola (x^(2))/(16)-(y^(2))/(3) =1 at the point (4 sec theta, sqrt(3) tan theta) then theta is

If the line y=mx + sqrt(a^2 m^2 - b^2) touches the hyperbola x^2/a^2 - y^2/b^2 = 1 at the point (a sec phi, b tan phi) , show that phi = sin^(-1) (b/am) .

The equation of normal to the curve x^2/a^2-y^2/b^2=1 at the point (a sec theta, b tan theta) is

Prove that b^(2)x^(2)-a^(2)y^(2)=a^(2)b^(2) , if x=a sec theta,y=b tan theta

If (a^2 -b^2) sin theta + 1ab cos theta = a^2 +b^2 , then find tan theta .

Let P(a sec theta,b tan theta) and Q(a sec c phi,b tan phi) (where theta+phi=(pi)/(2) be two points on the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 If (h,k) is the point of intersection of the normals at P and Q then k is equal to (A) (a^(2)+b^(2))/(a)(B)-((a^(2)+b^(2))/(a))( C) (a^(2)+b^(2))/(b)(D)-((a^(2)+b^(2))/(b))

If x=a sin theta and y=b cos theta , then prove : (x^(2))/(a^(2))+(y^(2))/(b^(2))=1

If (x)/(a)+(y)/(b)=sqrt(2) touches the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1, then find the eccentric angle theta of point of contact.

Evaluate (y^(2))/(b^(2))-(x^(2))/(a^(2)) , whre x=a tan theta and y= b sec theta .