Home
Class 12
MATHS
For any two vectors baru and barv prove ...

For any two vectors `baru and barv` prove that `(1+|baru|^2)(1+|barv|^2)=|baru+barv+baru times barv|^2`+ (|1-u.v|)^2.

Promotional Banner

Topper's Solved these Questions

  • VECTOR

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE) LEVEL-II|6 Videos
  • VECTOR

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-I|49 Videos
  • VECTOR

    FIITJEE|Exercise EXERCISE 7|2 Videos
  • TRIGONOMETIC EQUATIONS

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

For any two vectors vec u and vec v prove that (vec udot v)^(2)+|vec u xxvec v|^(2)=|vec u|^(2)|vec v|^(2)

For any two vectors vecu and vecv prove that (1+|vecu|^2(1+|vecv|^20=(1-vecu.vecc)^2+|vecu+vecv+vecuxxvec|^2

For any two vectors vecu and vecv , prove that (i) |vecu.vecv|^(2) + |vecu xx vecv|^(2) = |vecu|^(2)|vecv|^(2) and (ii) (1+|vecu|^(2))(1+|v|^(2)) =|1-vecv+(vecu xx vecv)|^(2)

For any two complex number z_(1) and z_(2) prove that: |z_(1)+z_(2)|>=|z_(1)|-|z_(2)|

For any two complex number z_(1) and z_(2) prove that: |z_(1)-z_(2)|>=|z_(1)|-|z_(2)|

For any two complex number z_(1) and z_(2) prove that: |z_(1)+z_(2)|<=|z_(1)|+|z_(2)|

For any two complex number z_(1) and z_(2) prove that: |z_(1)-z_(2)|<=|z_(1)|+|z_(2)|

Let bara and barb be two non coplanar unit vectors IF baru=bara-(bara.barb)barb and barv=bara times barb then |barv| is