Home
Class 12
MATHS
lim(xrarr1^(+))(log(sqrt2)sqrt2x)^(1/({x...

`lim_(xrarr1^(+))(log_(sqrt2)sqrt2x)^(1/({x}))` where [ ] represents greatest integer function is

A

`sqrt2`

B

e

C

`e^(log_sqrt2 (e ))`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 1^{+}} \left( \log_{\sqrt{2}} \sqrt{2x} \right)^{\frac{1}{\{x\}}} \), where \(\{x\}\) represents the fractional part of \(x\), we can follow these steps: ### Step 1: Rewrite the logarithm We start by rewriting the logarithm in terms of natural logarithm: \[ \log_{\sqrt{2}} \sqrt{2x} = \frac{\ln(\sqrt{2x})}{\ln(\sqrt{2})} = \frac{\ln(\sqrt{2}) + \ln(x)}{\frac{1}{2} \ln(2)} = \frac{2(\ln(\sqrt{2}) + \ln(x))}{\ln(2)} \] ### Step 2: Simplify the expression Now, we can simplify the expression: \[ \left( \log_{\sqrt{2}} \sqrt{2x} \right)^{\frac{1}{\{x\}}} = \left( \frac{2(\ln(\sqrt{2}) + \ln(x))}{\ln(2)} \right)^{\frac{1}{\{x\}}} \] ### Step 3: Analyze the limit as \(x \to 1^{+}\) As \(x\) approaches \(1\) from the right, the fractional part \(\{x\} = x - 1\) approaches \(0\). Therefore, we need to analyze the limit: \[ \lim_{x \to 1^{+}} \left( \frac{2(\ln(\sqrt{2}) + \ln(x))}{\ln(2)} \right)^{\frac{1}{x-1}} \] ### Step 4: Apply the exponential limit This limit is of the form \(1^{\infty}\). We can rewrite it using the exponential function: \[ = e^{\lim_{x \to 1^{+}} \frac{\ln\left( \frac{2(\ln(\sqrt{2}) + \ln(x))}{\ln(2)} \right)}{x-1}} \] ### Step 5: Evaluate the logarithm Now we evaluate the logarithm: \[ \ln\left( \frac{2(\ln(\sqrt{2}) + \ln(x))}{\ln(2)} \right) = \ln(2) + \ln(\ln(\sqrt{2}) + \ln(x)) - \ln(\ln(2)) \] ### Step 6: Differentiate using L'Hôpital's Rule Since both the numerator and denominator approach \(0\) as \(x \to 1^{+}\), we can apply L'Hôpital's Rule: \[ \lim_{x \to 1^{+}} \frac{\ln(\ln(\sqrt{2}) + \ln(x))}{x-1} \] ### Step 7: Find the derivative Taking the derivative of the numerator and denominator: - The derivative of the numerator is: \[ \frac{1}{\ln(\sqrt{2}) + \ln(x)} \cdot \frac{1}{x} \] - The derivative of the denominator is \(1\). ### Step 8: Evaluate the limit Now we evaluate: \[ \lim_{x \to 1^{+}} \frac{1}{\ln(\sqrt{2}) + \ln(x)} \cdot \frac{1}{x} \] At \(x = 1\), this becomes: \[ \frac{1}{\ln(\sqrt{2}) + 0} = \frac{1}{\ln(\sqrt{2})} \] ### Step 9: Final limit Thus, the limit evaluates to: \[ e^{\frac{1}{\ln(\sqrt{2})}} = e^{\frac{2}{\ln(2)}} \] ### Step 10: Apply the greatest integer function Finally, we need to apply the greatest integer function: \[ \lfloor e^{\frac{2}{\ln(2)}} \rfloor \] ### Conclusion After calculating \(e^{\frac{2}{\ln(2)}}\), we find the final answer.
Promotional Banner

Topper's Solved these Questions

  • TIPS

    FIITJEE|Exercise OBJECTIVE|84 Videos
  • TIPS

    FIITJEE|Exercise ASSERTION REASONING|8 Videos
  • TIPS

    FIITJEE|Exercise NUERICAL DECIMAL BASED QUATIONS|20 Videos
  • TEST PAPERS

    FIITJEE|Exercise MATHEMATICS|328 Videos
  • TRIGNOMETRIC RATIOS AND IDENTITIES

    FIITJEE|Exercise All Questions|1 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr1)[csc(pi x)/(2)]^((1)/((1-x))) (where [.] represents the greatest integer function) is equal to

lim_(x rarr1^(+))(log_(sqrt(2))sqrt(2)x)^((1)/(x)), where (0 represent fractional part of x .is

Evaluate :(lim)_(x rarr2^(+))([x-2])/(log(x-2)), where [.] represents the greatest integer function.

lim_(x rarr0)(tan^(2)[x])/([x]^(2)), where [] represents greatest integer function,is

lim_(xto1) [cosec(pix)/(2)]^(1//(1-x)) (where [.] represents the greatest integer function) is equal to

Evaluate: lim (tan x)/(x) where [.] represents the greatest integer function

Prove that [lim_(xrarr0) (sinx.tanx)/(x^(2))]=1 ,where [.] represents greatest integer function.

lim_(xrarr0) [(100 tan x sin x)/(x^2)] is (where [.] represents greatest integer function).

lim_(xrarr0) x^8[(1)/(x^3)] , where [.] ,denotes the greatest integer function is

lim_(xto0) [(1-e^(x))(sinx)/(|x|)] is (where [.] represents the greatest integer function )

FIITJEE-TIPS-ASSIGNMENT (SECTION (I): MCQ (SINGLE CORRECT)
  1. If f is twice differentiable such that f"(x)=-f(x) f'(x)=g(x),h'(x)=...

    Text Solution

    |

  2. lim(x->0) (tan^2[x])/([x]^2), where [] represents greatest integer fun...

    Text Solution

    |

  3. lim(xrarr1^(+))(log(sqrt2)sqrt2x)^(1/({x})) where [ ] represents great...

    Text Solution

    |

  4. The value of lim(xto(pi)/4)(4sqrt(2)-(cosx+sinx)^(5))/(1-sin2x) is

    Text Solution

    |

  5. lim(xrarrpi)([sinx]+x) is

    Text Solution

    |

  6. The slope of the tangent of the curve y=int0^x (dx)/(1+x^3) at the poi...

    Text Solution

    |

  7. The slope of the tangent to a curve y=f(x) at (x,f(x)) is 2x+1. If the...

    Text Solution

    |

  8. The difference between the greatest and the least values of the functi...

    Text Solution

    |

  9. Let f''(x) gt 0 AA x in R and g(x)=f(2-x)+f(4+x). Then g(x) is increas...

    Text Solution

    |

  10. If f(1)(x)=2x, f(2)x(=3 sin x-x cos x, for x in (0, (pi)/(2))

    Text Solution

    |

  11. Let f(x)=x^3+kx^2+5x+4sin^2x be an increasing function on x in R. Th...

    Text Solution

    |

  12. Let g'(x)gt 0 and f'(x) lt 0 AA x in R, then

    Text Solution

    |

  13. If x1 and x2 are abscissae of two points on the curve f(x) = x - x^2 i...

    Text Solution

    |

  14. f(x)={ax^2+bx+c, |x| > 1 x+1, |x| <= 1. If f(x) is continuous for all ...

    Text Solution

    |

  15. Function g(x)=int- 3^xsint(1/2-cost)dt where 0 < x < 2pi, has

    Text Solution

    |

  16. int(dx)/((x+3)^(8//7)(x-2)^(6//7)) is equal to

    Text Solution

    |

  17. If int(dx)/(sin^4x+cos^4x)=1/(sqrt(2))tan^(- 1)f(x)+C then

    Text Solution

    |

  18. int(cosalpha)/(a^2+sin^2alpha)d alpha is equal to

    Text Solution

    |

  19. int((x^2+2))/((x^2+1)(x^2+4))dx (for 0 < x < 1)=

    Text Solution

    |

  20. int(dx)/(sqrt(x^2-9)+sqrt(x^2-4))=

    Text Solution

    |