Home
Class 12
MATHS
lim(xrarrpi)([sinx]+x) is...

`lim_(xrarrpi)([sinx]+x)` is

A

`pi`

B

`1+pi`

C

`pi-1`

D

does not exist

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to \pi} (\lfloor \sin x \rfloor + x) \), we will analyze the behavior of the function as \( x \) approaches \( \pi \). ### Step-by-Step Solution: 1. **Identify the components of the limit**: We need to evaluate \( \lfloor \sin x \rfloor \) and \( x \) as \( x \) approaches \( \pi \). 2. **Evaluate \( \sin x \) as \( x \to \pi \)**: We know that \( \sin \pi = 0 \). Therefore, as \( x \) approaches \( \pi \), \( \sin x \) approaches \( 0 \). 3. **Determine \( \lfloor \sin x \rfloor \)**: Since \( \sin x \) approaches \( 0 \), we need to consider the behavior of \( \sin x \) just before \( x \) reaches \( \pi \). For values of \( x \) slightly less than \( \pi \), \( \sin x \) will be slightly positive but very close to \( 0 \). Thus, \( \lfloor \sin x \rfloor \) will be \( -1 \) because the greatest integer less than or equal to a small positive number approaching \( 0 \) is \( -1 \). 4. **Evaluate \( x \) as \( x \to \pi \)**: As \( x \) approaches \( \pi \), \( x \) itself approaches \( \pi \). 5. **Combine the results**: Now we can combine the results: \[ \lfloor \sin x \rfloor + x \to -1 + \pi \] 6. **Calculate the limit**: Therefore, we have: \[ \lim_{x \to \pi} (\lfloor \sin x \rfloor + x) = -1 + \pi \] ### Final Answer: \[ \lim_{x \to \pi} (\lfloor \sin x \rfloor + x) = \pi - 1 \]
Promotional Banner

Topper's Solved these Questions

  • TIPS

    FIITJEE|Exercise OBJECTIVE|84 Videos
  • TIPS

    FIITJEE|Exercise ASSERTION REASONING|8 Videos
  • TIPS

    FIITJEE|Exercise NUERICAL DECIMAL BASED QUATIONS|20 Videos
  • TEST PAPERS

    FIITJEE|Exercise MATHEMATICS|328 Videos
  • TRIGNOMETRIC RATIOS AND IDENTITIES

    FIITJEE|Exercise All Questions|1 Videos

Similar Questions

Explore conceptually related problems

lim_(xrarr0)(|sinx|)/(x) is equal to

lim_(xrarr0) (sinx)/(x)= ?

The value of lim_(xrarroo) (sinx)/(x) , is

lim_(xrarr(pi))(sinx)/(x-pi) is equal to

lim_(xrarrpi) (sin(pi-x))/(pi(pi-x))

Evaluate the following: lim_(xrarrpi/2)(2sin x+3)/(3cos x+3)

lim_(xrarroo) (sinx)/(x)=?

FIITJEE-TIPS-ASSIGNMENT (SECTION (I): MCQ (SINGLE CORRECT)
  1. lim(xrarr1^(+))(log(sqrt2)sqrt2x)^(1/({x})) where [ ] represents great...

    Text Solution

    |

  2. The value of lim(xto(pi)/4)(4sqrt(2)-(cosx+sinx)^(5))/(1-sin2x) is

    Text Solution

    |

  3. lim(xrarrpi)([sinx]+x) is

    Text Solution

    |

  4. The slope of the tangent of the curve y=int0^x (dx)/(1+x^3) at the poi...

    Text Solution

    |

  5. The slope of the tangent to a curve y=f(x) at (x,f(x)) is 2x+1. If the...

    Text Solution

    |

  6. The difference between the greatest and the least values of the functi...

    Text Solution

    |

  7. Let f''(x) gt 0 AA x in R and g(x)=f(2-x)+f(4+x). Then g(x) is increas...

    Text Solution

    |

  8. If f(1)(x)=2x, f(2)x(=3 sin x-x cos x, for x in (0, (pi)/(2))

    Text Solution

    |

  9. Let f(x)=x^3+kx^2+5x+4sin^2x be an increasing function on x in R. Th...

    Text Solution

    |

  10. Let g'(x)gt 0 and f'(x) lt 0 AA x in R, then

    Text Solution

    |

  11. If x1 and x2 are abscissae of two points on the curve f(x) = x - x^2 i...

    Text Solution

    |

  12. f(x)={ax^2+bx+c, |x| > 1 x+1, |x| <= 1. If f(x) is continuous for all ...

    Text Solution

    |

  13. Function g(x)=int- 3^xsint(1/2-cost)dt where 0 < x < 2pi, has

    Text Solution

    |

  14. int(dx)/((x+3)^(8//7)(x-2)^(6//7)) is equal to

    Text Solution

    |

  15. If int(dx)/(sin^4x+cos^4x)=1/(sqrt(2))tan^(- 1)f(x)+C then

    Text Solution

    |

  16. int(cosalpha)/(a^2+sin^2alpha)d alpha is equal to

    Text Solution

    |

  17. int((x^2+2))/((x^2+1)(x^2+4))dx (for 0 < x < 1)=

    Text Solution

    |

  18. int(dx)/(sqrt(x^2-9)+sqrt(x^2-4))=

    Text Solution

    |

  19. int(e^x[x^3(x+2)+8])/((x+2)^2)dx=

    Text Solution

    |

  20. int(x^3-6x^2+10 x-2)/(x^2-5x+6)dx=

    Text Solution

    |