Home
Class 12
MATHS
If f(x)=ae^(2x)+be^(x)+cx satisfies the ...

If `f(x)=ae^(2x)+be^(x)+cx` satisfies the condition `f(0)=ae^(2x)+be^(x)+cx` satisfies the condition `f(0)=-1, f'(log2)=31,int_(0)^(log4)(f(x)-cx)dx=(39)/(2)`, then

A

`a=-5, b=6, c=3`

B

`a=5, b=-6, c=3`

C

`a=-5, b=6, c=3`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will analyze the given function and the conditions provided. ### Given: The function is defined as: \[ f(x) = ae^{2x} + be^{x} + cx \] We have the following conditions: 1. \( f(0) = -1 \) 2. \( f'(\log 2) = 31 \) 3. \( \int_{0}^{\log 4} (f(x) - cx) \, dx = \frac{39}{2} \) ### Step 1: Find \( f(0) \) Substituting \( x = 0 \) into the function: \[ f(0) = ae^{0} + be^{0} + c(0) = a + b \] Given that \( f(0) = -1 \): \[ a + b = -1 \quad \text{(Equation 1)} \] ### Step 2: Find \( f'(x) \) We differentiate \( f(x) \): \[ f'(x) = \frac{d}{dx}(ae^{2x}) + \frac{d}{dx}(be^{x}) + \frac{d}{dx}(cx) \] Using the chain rule: \[ f'(x) = 2ae^{2x} + be^{x} + c \] ### Step 3: Evaluate \( f'(\log 2) \) Substituting \( x = \log 2 \): \[ f'(\log 2) = 2ae^{2\log 2} + be^{\log 2} + c \] Using \( e^{\log 2} = 2 \): \[ f'(\log 2) = 2a(2^2) + b(2) + c = 8a + 2b + c \] Given that \( f'(\log 2) = 31 \): \[ 8a + 2b + c = 31 \quad \text{(Equation 2)} \] ### Step 4: Evaluate the integral We need to compute: \[ \int_{0}^{\log 4} (f(x) - cx) \, dx \] This can be rewritten as: \[ \int_{0}^{\log 4} (ae^{2x} + be^{x}) \, dx \] Calculating the integral: \[ \int ae^{2x} \, dx = \frac{a}{2} e^{2x} \] \[ \int be^{x} \, dx = be^{x} \] Thus, \[ \int_{0}^{\log 4} (ae^{2x} + be^{x}) \, dx = \left[ \frac{a}{2} e^{2x} + be^{x} \right]_{0}^{\log 4} \] Calculating the limits: \[ = \left( \frac{a}{2} e^{2\log 4} + b e^{\log 4} \right) - \left( \frac{a}{2} e^{0} + b e^{0} \right) \] Using \( e^{2\log 4} = 16 \) and \( e^{\log 4} = 4 \): \[ = \left( \frac{a}{2} \cdot 16 + 4b \right) - \left( \frac{a}{2} + b \right) \] \[ = 8a + 4b - \frac{a}{2} - b = \frac{15a}{2} + 3b \] Setting this equal to \( \frac{39}{2} \): \[ \frac{15a}{2} + 3b = \frac{39}{2} \] Multiplying through by 2: \[ 15a + 6b = 39 \quad \text{(Equation 3)} \] ### Step 5: Solve the system of equations We have three equations: 1. \( a + b = -1 \) (Equation 1) 2. \( 8a + 2b + c = 31 \) (Equation 2) 3. \( 15a + 6b = 39 \) (Equation 3) From Equation 1, we can express \( b \) in terms of \( a \): \[ b = -1 - a \] Substituting \( b \) into Equation 3: \[ 15a + 6(-1 - a) = 39 \] \[ 15a - 6 - 6a = 39 \] \[ 9a - 6 = 39 \] \[ 9a = 45 \] \[ a = 5 \] Now substituting \( a \) back into Equation 1: \[ 5 + b = -1 \] \[ b = -6 \] ### Step 6: Find \( c \) Substituting \( a \) and \( b \) into Equation 2: \[ 8(5) + 2(-6) + c = 31 \] \[ 40 - 12 + c = 31 \] \[ c = 31 - 28 \] \[ c = 3 \] ### Final Values: Thus, we have: - \( a = 5 \) - \( b = -6 \) - \( c = 3 \) ### Summary: The values are: - \( a = 5 \) - \( b = -6 \) - \( c = 3 \)
Promotional Banner

Topper's Solved these Questions

  • TIPS

    FIITJEE|Exercise OBJECTIVE|84 Videos
  • TIPS

    FIITJEE|Exercise ASSERTION REASONING|8 Videos
  • TIPS

    FIITJEE|Exercise NUERICAL DECIMAL BASED QUATIONS|20 Videos
  • TEST PAPERS

    FIITJEE|Exercise MATHEMATICS|328 Videos
  • TRIGNOMETRIC RATIOS AND IDENTITIES

    FIITJEE|Exercise All Questions|1 Videos

Similar Questions

Explore conceptually related problems

If f(x)=pe^(2x)+qe^(x)+rx satisfies the condition f(0)=-1,f'(In2)=31 and int_(0)^(In4)(f(x)-rx)dx=(39)/(2) ,then the value of (p+q+r) is equal to

If f(x)=Ax^(2)+Bx satisfies the conditions f'(1)=8 and int_(0)^(1)f(x)dx=(8)/(3), then

If f(x)=ae^(2x)+be^x+cx satisfies the conditions f(0)=-1, f\'log(2)=28, int_0^(log4) [f(x)-cx]dx=39/2 , then (A) a=5, b=6, c=3 (B) a=5, b=-6, c=0 (C) a=-5, b=6, c=3 (D) none of these

If a function satisfies the condition f(x+1/x)=x^(2)+1/(x^(2)),xne0 , then domain of f(x) is

Let f(x)=ae^(2x)+be^x+cx , where f(0)=-1, f'(log_e2)=21 and int_0^(log_e4)(f(x)-cx)dx=39/2 then the value of abs(a+b+c) is__________

Ify=f(x) satisfies the condition f(x+(1)/(x))=x^(2)+(1)/(x^(2))(x!=0) then f(x)=

Consider the function y=f(x) satisfying the condition f(x+(1)/(x))=x^(2)+(1)/(x^(2))(x!=0)

FIITJEE-TIPS-ASSIGNMENT (SECTION (I): MCQ (SINGLE CORRECT)
  1. If int(pi/2)^x sqrt(3-2sin^2) tdt+ int0^y costdt=0, then (dy/dx)at x =...

    Text Solution

    |

  2. Let f(x)=int3^(25n+1/4) e^({2x+3}) dx, where {x} is fractional part of...

    Text Solution

    |

  3. If f(x)=ae^(2x)+be^(x)+cx satisfies the condition f(0)=ae^(2x)+be^(x)+...

    Text Solution

    |

  4. The value of inte^(pi^2) [logpi x]\ d(loge x) is

    Text Solution

    |

  5. 7(int0^1(x^4(1-x)^4dx)/(1+x^2)+pi) is equal to

    Text Solution

    |

  6. int(-pi/3)^0[cot^(-1)(2/(2cosx-1))+cot^(-1)(cosx-1/2)]dxi se q u a lto...

    Text Solution

    |

  7. If I=int(0)^(pi//2)sin 2n x log cos x dx. Then l is same as

    Text Solution

    |

  8. "I f"I1=int(-100)^(101)(dx)/((5+2x-2x^2)(1+e^(2-4x))) "and"I2=int(-10...

    Text Solution

    |

  9. If f(x)=[|x|], then int0^100 f(x)dx is equal to (where [.] denotes the...

    Text Solution

    |

  10. Ifint(-pi)^((3pi)/4)(e^(pi/4)dx)/((e^x+e^(pi/4))(sinx+cosx)=kint(-pi/2...

    Text Solution

    |

  11. If k be positive integer , then the number of values of k satisfying i...

    Text Solution

    |

  12. If the ordinate x = a divides the area bounded by the curve y=1+(8)/(...

    Text Solution

    |

  13. Area common to the circle x^2+y^2=64 and the parabola y^2=4x is

    Text Solution

    |

  14. The ratio of the areas between the curves y=cos x and y=cos 2x and x-...

    Text Solution

    |

  15. Area bounded by y = |x - pi/2| and x = 0, x = pi equals

    Text Solution

    |

  16. The area cut off a parabola 4y=3x^(2) by the straight line 2y=3x+12 in...

    Text Solution

    |

  17. Find the area of the region lying in the first quadrant and bounded b...

    Text Solution

    |

  18. The area of smaller portion of the circle x^2+y^2=a^2 cut off by the l...

    Text Solution

    |

  19. The area of the smaller portion of the circle x^2+y^2=4 cut off the l...

    Text Solution

    |

  20. The area of the region bounded by y = |x - 1| and y = 1 is

    Text Solution

    |