Home
Class 12
MATHS
Let f(x)=(1)/(1+x) and let g(x,n)=f(f(f(...

Let `f(x)=(1)/(1+x)` and let `g(x,n)=f(f(f(….(x))))`, then `lim_(nrarroo)g(x, n)` at x = 1 is

A

`(sqrt5-1)/(2)`

B

`(sqrt5+1)/(2)`

C

`(sqrt3+2)/(2)`

D

`(2-sqrt3)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to analyze the function \( f(x) = \frac{1}{1+x} \) and the nested function \( g(x, n) = f(f(f(...(x)))) \) where \( f \) is applied \( n \) times. We want to find the limit of \( g(x, n) \) as \( n \) approaches infinity, specifically at \( x = 1 \). ### Step 1: Define the function and find its first few iterations We start with the function: \[ f(x) = \frac{1}{1+x} \] Now we compute \( g(x, 1) \): \[ g(x, 1) = f(x) = \frac{1}{1+x} \] Next, we compute \( g(x, 2) \): \[ g(x, 2) = f(f(x)) = f\left(\frac{1}{1+x}\right) = \frac{1}{1 + \frac{1}{1+x}} = \frac{1+x}{2+x} \] Now compute \( g(x, 3) \): \[ g(x, 3) = f(g(x, 2)) = f\left(\frac{1+x}{2+x}\right) = \frac{1}{1 + \frac{1+x}{2+x}} = \frac{2+x}{3+2x} \] ### Step 2: Find the limit as \( n \to \infty \) We want to find: \[ \lim_{n \to \infty} g(1, n) \] First, we substitute \( x = 1 \) into our expressions: - For \( g(1, 1) \): \[ g(1, 1) = f(1) = \frac{1}{1+1} = \frac{1}{2} \] - For \( g(1, 2) \): \[ g(1, 2) = f(f(1)) = f\left(\frac{1}{2}\right) = \frac{1}{1+\frac{1}{2}} = \frac{2}{3} \] - For \( g(1, 3) \): \[ g(1, 3) = f(g(1, 2)) = f\left(\frac{2}{3}\right) = \frac{1}{1+\frac{2}{3}} = \frac{3}{5} \] ### Step 3: Establish a pattern and find the limit We observe that: - \( g(1, 1) = \frac{1}{2} \) - \( g(1, 2) = \frac{2}{3} \) - \( g(1, 3) = \frac{3}{5} \) It appears that \( g(1, n) \) is approaching a limit. Let's denote this limit as \( y \): \[ y = \lim_{n \to \infty} g(1, n) \] From the functional form, we can derive: \[ y = f(y) = \frac{1}{1+y} \] Multiplying both sides by \( 1+y \): \[ y(1+y) = 1 \implies y^2 + y - 1 = 0 \] ### Step 4: Solve the quadratic equation Using the quadratic formula: \[ y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 1 \cdot (-1)}}{2 \cdot 1} = \frac{-1 \pm \sqrt{5}}{2} \] Since \( y \) must be positive, we take: \[ y = \frac{-1 + \sqrt{5}}{2} \] ### Final Answer Thus, the limit is: \[ \lim_{n \to \infty} g(1, n) = \frac{-1 + \sqrt{5}}{2} \]
Promotional Banner

Topper's Solved these Questions

  • TIPS

    FIITJEE|Exercise OBJECTIVE|84 Videos
  • TIPS

    FIITJEE|Exercise ASSERTION REASONING|8 Videos
  • TIPS

    FIITJEE|Exercise NUERICAL DECIMAL BASED QUATIONS|20 Videos
  • TEST PAPERS

    FIITJEE|Exercise MATHEMATICS|328 Videos
  • TRIGNOMETRIC RATIOS AND IDENTITIES

    FIITJEE|Exercise All Questions|1 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=(1)/(x) and g(x)=(1)/(sqrt(x)) . Then,

Let f(x)=x^(2)+xg'(1)+g''(2) and g(x)=f(1).x^(2)+xf'(x)+f''(x) then

Let f(x+y)=f(x)f(y) and f(x)=1+xg(x)G(x) where lim_(x rarr0)g(x)=a and lim_(x rarr o)G(x)=b Then f'(x) is

let ( f(x) = 1-|x| , |x| 1 ) g(x)=f(x+1)+f(x-1)

Let g(x)=f(x)+f(1-x) and f'(x)<00<=x<=1. Then

Let f(x)=x^(2)+xg^(2)(1)+g'(2) and g(x)=f(1)*x^(2)+xf'(x)+f''(x) then find f(x) and g(x)

Let f(x)=(x)/((1+x^(n))^((1)/(n))) for n>=2 and g(x)=(f(ofo...of)(x) Then int x^(n-2)g(x)dx equals

Let g(x)=2f((x)/(2))+f(1-x) and f'(x)<0 in 0<=x<=1 then g(x)

Let f(x)=x^(2)+xg'(1)+g''(2) and g(x)=f(1)x^(2)+xf'(x)+f''(x) then f(g(1)) is equal to

Let f(x)=cos((x)/(2))*cos((x)/(4))*...*cos((x)/(2^(n))). If lim_(n rarr oo)f(x)=g(x) and lim_(x rarr0)g(x)=k then value of lim_(y rarr k)[(1-y^(2011))/(1-y)]

FIITJEE-TIPS-ASSIGNMENT (SECTION (I): MCQ (SINGLE CORRECT)
  1. Value of (1^2)/1+(1^2+2^2)/(1+2)+(1^2+2^2+3^2)/(1+2+3)+.... 'n' terms...

    Text Solution

    |

  2. If f(x)=x^9-6x-2x^7+12 x^6+x^4-7x^3+6x^2+x-3, find f(6)dot

    Text Solution

    |

  3. Let f(x)=(1)/(1+x) and let g(x,n)=f(f(f(….(x)))), then lim(nrarroo)g(x...

    Text Solution

    |

  4. lim(xrarr0^(+)){ln((x^(7)+2x^(6)e+x^(5)e^(2)))-ln(x^(2)sin^(3)x)} is e...

    Text Solution

    |

  5. A continuous, even periodic function f with period 8 is such that f(0)...

    Text Solution

    |

  6. The value of int(0)^(1)(Pi(i=1)^(n)(x+i))(Sigma(j=1)^(n)(1)/(x+j))dx i...

    Text Solution

    |

  7. If f is a continuous and differentiable funciton in x in (0, 1) such t...

    Text Solution

    |

  8. int(0)^(1)[(x)/(sinx)]dx equals to, ([.] denotes greatest integers fun...

    Text Solution

    |

  9. If area bounded by the curve x^(2)y+y^(2)x=alpha y is 2 units, then po...

    Text Solution

    |

  10. Let f(x)={{:(2^([x]),, x lt0),(2^([-x]),,x ge0):}, then the area bound...

    Text Solution

    |

  11. The degree and order of differntial equation of family of circle touch...

    Text Solution

    |

  12. If k sin^(2)x+(1)/(k) cosec^(2) x=2, x in (0,(pi)/(2)), then cos^(2...

    Text Solution

    |

  13. Domain of the function f(x)=(1)/([sinx-1]) (where [.] denotes the grea...

    Text Solution

    |

  14. For f:N rarr R f(x)=(x^(3)-11^(3))^(1//3), the number of positive inte...

    Text Solution

    |

  15. If f(x)=={{:((sin(x))/({x})",",{x} ne 0),(k",",{x}0):}, where {x} deno...

    Text Solution

    |

  16. If f(x)=int(0)^(x)(e^(t)+3)dt, then which of the following is always t...

    Text Solution

    |

  17. Let g(x)=e^f(x)), g(x+1)=xg(x), then (g'((2n+1)/(2))g((1)/(2))-g'((1)/...

    Text Solution

    |

  18. If g(x) is a curve which is obtained by the reflection of f(x) = (e^x...

    Text Solution

    |

  19. Let f(x)=int((4x^(4)-2x^(3)-3x^(2)-4)dx)/((x^(4)+x^(3)+1)^(3//2)). If ...

    Text Solution

    |

  20. If x(1), x(2), x(3), x(4) are positive roots of the equation x^(4)-8x^...

    Text Solution

    |