Home
Class 12
MATHS
Let f(x)={{:(2^([x]),, x lt0),(2^([-x]),...

Let `f(x)={{:(2^([x]),, x lt0),(2^([-x]),,x ge0):}`, then the area bounded by `y=f(x) and y=0` is

A

1

B

2

C

3

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the area bounded by the function \( f(x) \) and the x-axis, we need to analyze the function defined as: \[ f(x) = \begin{cases} 2^{\lfloor x \rfloor} & \text{if } x < 0 \\ 2^{-\lfloor x \rfloor} & \text{if } x \geq 0 \end{cases} \] ### Step 1: Analyze the function for \( x < 0 \) For \( x < 0 \): - When \( -1 < x < 0 \), \( \lfloor x \rfloor = -1 \) so \( f(x) = 2^{-1} = \frac{1}{2} \). - When \( -2 < x < -1 \), \( \lfloor x \rfloor = -2 \) so \( f(x) = 2^{-2} = \frac{1}{4} \). - When \( -3 < x < -2 \), \( \lfloor x \rfloor = -3 \) so \( f(x) = 2^{-3} = \frac{1}{8} \). - This pattern continues for \( x < -3 \). ### Step 2: Analyze the function for \( x \geq 0 \) For \( x \geq 0 \): - When \( 0 \leq x < 1 \), \( \lfloor x \rfloor = 0 \) so \( f(x) = 2^{0} = 1 \). - When \( 1 \leq x < 2 \), \( \lfloor x \rfloor = 1 \) so \( f(x) = 2^{-1} = \frac{1}{2} \). - When \( 2 \leq x < 3 \), \( \lfloor x \rfloor = 2 \) so \( f(x) = 2^{-2} = \frac{1}{4} \). - This pattern continues for \( x \geq 3 \). ### Step 3: Calculate the area for \( x < 0 \) The area under the curve for \( x < 0 \) can be calculated as follows: - From \( -1 \) to \( 0 \): Area = \( \frac{1}{2} \times 1 = \frac{1}{2} \) - From \( -2 \) to \( -1 \): Area = \( \frac{1}{4} \times 1 = \frac{1}{4} \) - From \( -3 \) to \( -2 \): Area = \( \frac{1}{8} \times 1 = \frac{1}{8} \) This continues indefinitely, forming a geometric series: \[ \text{Area} = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \ldots \] ### Step 4: Calculate the area for \( x \geq 0 \) The area under the curve for \( x \geq 0 \) is similar: - From \( 0 \) to \( 1 \): Area = \( 1 \times 1 = 1 \) - From \( 1 \) to \( 2 \): Area = \( \frac{1}{2} \times 1 = \frac{1}{2} \) - From \( 2 \) to \( 3 \): Area = \( \frac{1}{4} \times 1 = \frac{1}{4} \) This also forms a geometric series: \[ \text{Area} = 1 + \frac{1}{2} + \frac{1}{4} + \ldots \] ### Step 5: Sum the areas The total area bounded by \( f(x) \) and the x-axis is: \[ \text{Total Area} = 2 \left( \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \ldots \right) + \left( 1 + \frac{1}{2} + \frac{1}{4} + \ldots \right) \] Using the formula for the sum of an infinite geometric series \( S = \frac{a}{1 - r} \): For the series \( \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \ldots \): - First term \( a = \frac{1}{2} \), common ratio \( r = \frac{1}{2} \) - Sum = \( \frac{\frac{1}{2}}{1 - \frac{1}{2}} = 1 \) For the series \( 1 + \frac{1}{2} + \frac{1}{4} + \ldots \): - First term \( a = 1 \), common ratio \( r = \frac{1}{2} \) - Sum = \( \frac{1}{1 - \frac{1}{2}} = 2 \) Thus, the total area is: \[ \text{Total Area} = 2 \times 1 + 2 = 4 \] ### Final Answer The area bounded by \( y = f(x) \) and \( y = 0 \) is \( 2 \).
Promotional Banner

Topper's Solved these Questions

  • TIPS

    FIITJEE|Exercise OBJECTIVE|84 Videos
  • TIPS

    FIITJEE|Exercise ASSERTION REASONING|8 Videos
  • TIPS

    FIITJEE|Exercise NUERICAL DECIMAL BASED QUATIONS|20 Videos
  • TEST PAPERS

    FIITJEE|Exercise MATHEMATICS|328 Videos
  • TRIGNOMETRIC RATIOS AND IDENTITIES

    FIITJEE|Exercise All Questions|1 Videos

Similar Questions

Explore conceptually related problems

Let f(x)={{:(x^(2)+4,":",xlt0),(4-2x,":",xge0):} then the area bounded by y=f(x) and the x - axis from x=-1" to "x=3 is equal to

Let f(x)= {{:(1+ sin x, x lt 0 ),(x^2-x+1, x ge 0 ):}

If f(x)={(2x", for " x lt 0),(2x+1", for " x ge 0):} , then

If f(x)={{:(x-2",","for "x ge0),((x^(2))/(4)-2","," for "x lt0):} , then find area bounded by y=|f(x)| and x - axis.

Let f(x)=x^(3)+x^(2)+x+1, then the area (in sq. units) bounded by y=f(x), x=0, y=0 and x=1 is equal to

If f(x) = {(x,",", x ge 0),(x^(2),",",x lt 0):} , then f(x) is

If f(x)={{:(2+x",", x ge0),(4-x",", x lt 0):}, then f (f(x)) is given by :

Let f (x)= [{:(x+1,,, x lt0),((x-1),,, x ge0):}and g (x)=[{:(x+1,,, x lt 0),((x-1)^(2),,, x ge0):} then the number of points where g (f(x)) is not differentiable.

Let f(x)={(5^(1//x)"," , x lt 0),(lambda[x]",",x ge0):} and lambda in R , then at x = 0

If f(x) = {{:(x - 3",",x lt 0),(x^(2) - 3x + 2",",x ge 0):} , then g(x) = f(|x|) is

FIITJEE-TIPS-ASSIGNMENT (SECTION (I): MCQ (SINGLE CORRECT)
  1. If f is a continuous and differentiable funciton in x in (0, 1) such t...

    Text Solution

    |

  2. int(0)^(1)[(x)/(sinx)]dx equals to, ([.] denotes greatest integers fun...

    Text Solution

    |

  3. If area bounded by the curve x^(2)y+y^(2)x=alpha y is 2 units, then po...

    Text Solution

    |

  4. Let f(x)={{:(2^([x]),, x lt0),(2^([-x]),,x ge0):}, then the area bound...

    Text Solution

    |

  5. The degree and order of differntial equation of family of circle touch...

    Text Solution

    |

  6. If k sin^(2)x+(1)/(k) cosec^(2) x=2, x in (0,(pi)/(2)), then cos^(2...

    Text Solution

    |

  7. Domain of the function f(x)=(1)/([sinx-1]) (where [.] denotes the grea...

    Text Solution

    |

  8. For f:N rarr R f(x)=(x^(3)-11^(3))^(1//3), the number of positive inte...

    Text Solution

    |

  9. If f(x)=={{:((sin(x))/({x})",",{x} ne 0),(k",",{x}0):}, where {x} deno...

    Text Solution

    |

  10. If f(x)=int(0)^(x)(e^(t)+3)dt, then which of the following is always t...

    Text Solution

    |

  11. Let g(x)=e^f(x)), g(x+1)=xg(x), then (g'((2n+1)/(2))g((1)/(2))-g'((1)/...

    Text Solution

    |

  12. If g(x) is a curve which is obtained by the reflection of f(x) = (e^x...

    Text Solution

    |

  13. Let f(x)=int((4x^(4)-2x^(3)-3x^(2)-4)dx)/((x^(4)+x^(3)+1)^(3//2)). If ...

    Text Solution

    |

  14. If x(1), x(2), x(3), x(4) are positive roots of the equation x^(4)-8x^...

    Text Solution

    |

  15. If int(0)^(1)(2^(t)dt)/(t+3)=A and int(a-1)^(a)(2^(t)dt)/(t+b-1)=2^(a-...

    Text Solution

    |

  16. (p^^~q) ^^ (~pvvq) is

    Text Solution

    |

  17. ~(prArr q)hArr ~pvv p) is a

    Text Solution

    |

  18. Which of the following is logically equivalent to ~(~prArr q)?

    Text Solution

    |

  19. Which of the following is logically equivalent to ~(~p implies q)

    Text Solution

    |

  20. p implies q can also be written as-

    Text Solution

    |