Home
Class 12
MATHS
Statement 1 : pi^(4) gt 4^(pi) because...

Statement 1 : `pi^(4) gt 4^(pi)`
because
Statement 2 : The function `y=x^(x)` os decreasing `AA x gt (1)/(e ).`

A

Statement - 1 is True, Statement - 2 is True, Statement - 2 is a correct explanation for Statement - 5

B

Statement - 1 is True, Statement - 2 is True, Statement - 2 is NOT a correct explanation for Statement - 5

C

Statement - 1 is True, Statement - 2 is False

D

Statement - 1 is False, Statement - 2 is True

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze both statements step by step. ### Step 1: Analyze Statement 1 We need to prove that \( \pi^4 > 4^\pi \). 1. **Calculate the values of \( \pi \) and \( 4 \)**: - The value of \( \pi \) is approximately \( 3.14 \). - The value of \( 4 \) is \( 4 \). 2. **Calculate \( \pi^4 \)**: \[ \pi^4 \approx (3.14)^4 \approx 97.66 \] 3. **Calculate \( 4^\pi \)**: \[ 4^\pi = 4^{3.14} \approx 4^{3.14} \approx 64.00 \] 4. **Compare the two values**: \[ 97.66 > 64.00 \] Thus, \( \pi^4 > 4^\pi \) is true. ### Step 2: Analyze Statement 2 We need to analyze the function \( y = x^x \) and determine if it is decreasing for \( x > \frac{1}{e} \). 1. **Take the natural logarithm of \( y \)**: \[ \ln(y) = x \ln(x) \] 2. **Differentiate \( \ln(y) \)**: Using the product rule: \[ \frac{d}{dx}(\ln(y)) = \ln(x) + 1 \] 3. **Set the derivative equal to zero to find critical points**: \[ \ln(x) + 1 = 0 \implies \ln(x) = -1 \implies x = \frac{1}{e} \] 4. **Determine the sign of the derivative**: - For \( x < \frac{1}{e} \), \( \ln(x) < -1 \) (negative), so \( \frac{d}{dx}(\ln(y)) < 0 \) (decreasing). - For \( x > \frac{1}{e} \), \( \ln(x) > -1 \) (positive), so \( \frac{d}{dx}(\ln(y)) > 0 \) (increasing). ### Conclusion - **Statement 1**: True, \( \pi^4 > 4^\pi \). - **Statement 2**: False, the function \( y = x^x \) is increasing for \( x > \frac{1}{e} \). ### Final Answer - Statement 1 is true and Statement 2 is false.
Promotional Banner

Topper's Solved these Questions

  • TIPS

    FIITJEE|Exercise MCQ (MULTIPLE CORRECT)|37 Videos
  • TIPS

    FIITJEE|Exercise PARAGRAPH BASED (MULTIPLE CHOICE) (COMPREHENSION - I)|39 Videos
  • TIPS

    FIITJEE|Exercise OBJECTIVE|84 Videos
  • TEST PAPERS

    FIITJEE|Exercise MATHEMATICS|328 Videos
  • TRIGNOMETRIC RATIOS AND IDENTITIES

    FIITJEE|Exercise All Questions|1 Videos

Similar Questions

Explore conceptually related problems

Statement 1: pi^(4) gt 4^(pi) because Statement 2 : The function y = x^(x) is decreasing forall x gt 1/e .

Statement-1 e^(pi) gt pi^( e) Statement -2 The function x^(1//x)( x gt 0) is strictly decreasing in [e ,oo)

Show that the function f(x)=sin(2x+pi/4) is decreasing on (3 pi/8,5 pi/8)

Statement 1 : f(x)=log_(e+x) (pi+x) is strictly increasing for all . Statement 2 : pi+x gt e+x, AA x gt 0

The length of the longest interval in which the function f(x)=x^(3)-3a^(2)x+4 is decreasing is (AA a gt 0)

Statement-2 f(x)=(sin x)/(x) lt 1 for lt x lt pi/2 Statement -2 f(x)=(sin x)/(x) is decreasing function on (0,pi//2)

Consider the following statements : 1. The function f(x)=sinx decreases on the interval (0,pi//2) . 2. The function f(x)=cosx increases on the interval (0,pi//2) . Which of the above statements is/are correct ?

Statement 1: Let f(x)=sin(cos x) in [0,(pi)/(2)]* Then f(x) is decreasing in [0,(pi)/(2)] Statement 2:cos x is a decreasing function AA x in[0,(pi)/(2)]

statement: e^(pi) is bigger than pi^(e) statement 2:f(x)=x^((1)/(x)) is an increasing function whenn xe[e,oo)

Statement-1 . The critical points of f(x)=xcosx occur in (pi//4,pi//3) Statement-2 : The functions g(x)=xtanx increase ion (0,pi//2)