Home
Class 12
MATHS
If l=int(0)^(1//2)(dx)/(sqrt(1-x^(2n))),...

If `l=int_(0)^(1//2)(dx)/(sqrt(1-x^(2n))), n in N` then
(Where, `[.]` denotes G.I.F)

A

`[l]=1`

B

`[l]=0`

C

`l le (pi)/(2)`

D

`l le (pi)/(6)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( L = \int_{0}^{\frac{1}{2}} \frac{dx}{\sqrt{1 - x^{2n}}} \), where \( n \in \mathbb{N} \), we will follow these steps: ### Step 1: Understanding the Integral We need to evaluate the integral \( L \). The integrand \( \frac{1}{\sqrt{1 - x^{2n}}} \) suggests a trigonometric substitution might be useful, as it resembles the derivative of the arcsine function. **Hint:** Look for a substitution that simplifies the square root in the denominator. ### Step 2: Trigonometric Substitution Let \( x = \sin(\theta) \). Then, \( dx = \cos(\theta) d\theta \). The limits of integration change as follows: - When \( x = 0 \), \( \theta = 0 \). - When \( x = \frac{1}{2} \), \( \theta = \sin^{-1}(\frac{1}{2}) = \frac{\pi}{6} \). Now, substituting into the integral, we have: \[ L = \int_{0}^{\frac{\pi}{6}} \frac{\cos(\theta) d\theta}{\sqrt{1 - \sin^{2n}(\theta)}} \] **Hint:** Remember that \( \sqrt{1 - \sin^{2n}(\theta)} = \cos^{n}(\theta) \) for \( n \in \mathbb{N} \). ### Step 3: Simplifying the Integral Using the identity \( \sqrt{1 - \sin^{2n}(\theta)} = \cos^{n}(\theta) \), we can rewrite the integral: \[ L = \int_{0}^{\frac{\pi}{6}} \frac{\cos(\theta)}{\cos^{n}(\theta)} d\theta = \int_{0}^{\frac{\pi}{6}} \cos^{1-n}(\theta) d\theta \] **Hint:** Consider the case when \( n = 1 \) and how it affects the integral. ### Step 4: Evaluating the Integral For \( n = 1 \): \[ L = \int_{0}^{\frac{\pi}{6}} \cos^{0}(\theta) d\theta = \int_{0}^{\frac{\pi}{6}} 1 d\theta = \frac{\pi}{6} \] For \( n > 1 \): The integral \( \int \cos^{1-n}(\theta) d\theta \) can be evaluated, but it will yield values less than \( \frac{\pi}{6} \) as \( n \) increases. **Hint:** The value of the integral decreases as \( n \) increases. ### Step 5: Conclusion Thus, we conclude that: \[ L \leq \frac{\pi}{6} \] The maximum value of \( L \) occurs when \( n = 1 \), giving us \( L = \frac{\pi}{6} \). **Final Answer:** The greatest integer function value is \( \lfloor L \rfloor = 0 \).
Promotional Banner

Topper's Solved these Questions

  • TIPS

    FIITJEE|Exercise PARAGRAPH BASED (MULTIPLE CHOICE) (COMPREHENSION - I)|39 Videos
  • TIPS

    FIITJEE|Exercise NUMERICAL BASED QUESTIONS|23 Videos
  • TIPS

    FIITJEE|Exercise ASSERTION REASONING|8 Videos
  • TEST PAPERS

    FIITJEE|Exercise MATHEMATICS|328 Videos
  • TRIGNOMETRIC RATIOS AND IDENTITIES

    FIITJEE|Exercise All Questions|1 Videos

Similar Questions

Explore conceptually related problems

Let I_(n) = int_(0)^(1//2)(1)/(sqrt(1-x^(n))) dx where n gt 2 , then

If I=int_(0)^(1//2) (1)/(sqrt(1-x^(2n)))dx then which one of the following is not true ?

The value of flim_(n->oo){(sqrt(2)+1)^n}(-1)^[[(sqrt(2)+1)^(n)], n in Z is (where[.] denotes G I F and {.} denotes fractional part function)

If I=int_(0)^((1)/(2))(1)/(sqrt(1-x^(2n)))dx, then (A) I =(1)/(2)(C)I>=0(D) none of these

If I_(n)=int_(0)^(1)(dx)/((1+x^(2))^(n));n in N, then prove that 2nI_(n+1)=2^(-n)+(2n-1)I_(n)

If n>1, then int_(0)^(oo)(dx)/((x+sqrt(1+x^(2)))^(n)) equals

If I_(n)=int_(0)^(1)x^(n)e^(-x)dx for n in N, then I_(7)-I_(6)=

If I_(n)=int_(0)^(2)(2dx)/((1-x^(n))) , then the value of lim_(nrarroo)I_(n) is equal to

int_(0)^(1)x^((m-1))(1-x)^((n-1))dx is equal to where m,n in N

FIITJEE-TIPS-MCQ (MULTIPLE CORRECT)
  1. The solution of (x d d+y dy)/(x dy-y dx)=sqrt((1-x^2-y^2)/(x^2+y^2)) i...

    Text Solution

    |

  2. Let l=int(0)^(1)(dx)/(1+x^(e )). Then

    Text Solution

    |

  3. If l=int(0)^(1//2)(dx)/(sqrt(1-x^(2n))), n in N then (Where, [.] den...

    Text Solution

    |

  4. Which of the following is/are a contradiction ?

    Text Solution

    |

  5. The curve u=a sqrtx+bx passes through the point (1, 2) and the area en...

    Text Solution

    |

  6. The area bounded by the curve y=x^(4)-2x^(3)+x^(2)+3 with x-axis and o...

    Text Solution

    |

  7. Let y = (A + Bx) e^(3x) is a solution of the differential equation(d^2...

    Text Solution

    |

  8. ((dy)/(dx))^(2) + 2y cot x (dy)/(dx) = y^(2) has the solution

    Text Solution

    |

  9. The differential equation of the curve for which the initial ordina...

    Text Solution

    |

  10. Solution of the differential equation : (3tan x=4 cot y-7)sin^(2)ydx...

    Text Solution

    |

  11. If f(x)=1/((x-1)(x-2)) and g(x)=1/x^2 then points of discontinuity of ...

    Text Solution

    |

  12. Let f(x)={{:(int(0)^(x)(5+|1-t|)dt","," if "xgt 2),(5x+1","," if "x le...

    Text Solution

    |

  13. If f'(x) gt f(x)" for all "x ge 1 and f(1)=0, then

    Text Solution

    |

  14. The values of a which the integral int|x-a|dx ge 1 is satisfied are

    Text Solution

    |

  15. If a point P moves inside a equilateral triangle of side length a such...

    Text Solution

    |

  16. The solution of ((dy)/(dx))^(2)-2(x+(1)/(4x))(dy)/(dx)+1=0

    Text Solution

    |

  17. If the equation x^(5)-10a^(3)x^(2)+b^(4)x+c^(5)=0 has three equal root...

    Text Solution

    |

  18. Let S be the set of real values of parameter lamda for which the equat...

    Text Solution

    |

  19. Let A(n)=sum(r=1)^(n)cos^(-1).(r )/(n) and B(n)=sum(r=0)^(n-1)cos^(-1)...

    Text Solution

    |

  20. If int (-alpha) ^(alpha ) (e ^(x) + cos x ln (x + sqrt(1+x ^(2))))dx g...

    Text Solution

    |