Home
Class 12
MATHS
If m gt 0, n gt 0, the definite integral...

If `m gt 0, n gt 0`, the definite integral `l=int_(0)^(1)x^(m-1)(1-x)^(n-1)dx` depends upon the vlaues of m and n and is denoted by `beta(m,n)`, called the beta function. E.g.
`int_(0)^(1)x^(4)(1-x)^(5)dx=int_(0)^(1)x^(5-1)(1-x)^(6-1)dx=beta(5, 6) and int_(0)^(1)x^(5//2)(1-x)^(-1//2)dx=int_(0)^(1)x^(7//2-1)(1-x)^(1//2-1)dx=beta((7)/(2),(1)/(2))`. Obviously, `beta(n, m)=beta(m, n)`.
The integral `int_(0)^(pi//2)cos^(2m)theta sin^(2n) theta d theta` is equal to

A

`(1)/(2) beta (m+(1)/(2), n+(1)/(2))`

B

`2beta(2m, 2n)`

C

`beta(2m+1, 2n+1)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\frac{\pi}{2}} \cos^{2m} \theta \sin^{2n} \theta \, d\theta \), we can use the properties of the Beta function and some substitutions. ### Step-by-Step Solution: 1. **Recognize the Integral Form**: The integral can be expressed in terms of the Beta function: \[ I = \int_{0}^{\frac{\pi}{2}} \cos^{2m} \theta \sin^{2n} \theta \, d\theta \] 2. **Substitution**: We can use the substitution \( x = \sin^2 \theta \). Then, \( dx = 2 \sin \theta \cos \theta \, d\theta \) or \( d\theta = \frac{dx}{2 \sqrt{x(1-x)}} \). The limits change from \( \theta = 0 \) to \( \theta = \frac{\pi}{2} \) which corresponds to \( x = 0 \) to \( x = 1 \). 3. **Change the Integral**: The integral becomes: \[ I = \int_{0}^{1} (1-x)^{m-1} x^{n-1} \frac{dx}{2 \sqrt{x(1-x)}} \] Simplifying, we get: \[ I = \frac{1}{2} \int_{0}^{1} x^{n-1} (1-x)^{m-1} \, dx \] 4. **Identify the Beta Function**: The integral \( \int_{0}^{1} x^{n-1} (1-x)^{m-1} \, dx \) is the Beta function \( B(n, m) \): \[ I = \frac{1}{2} B(n, m) \] 5. **Use the Property of Beta Function**: The Beta function can also be expressed in terms of Gamma functions: \[ B(n, m) = \frac{\Gamma(n) \Gamma(m)}{\Gamma(n+m)} \] Therefore, we have: \[ I = \frac{1}{2} \cdot \frac{\Gamma(n) \Gamma(m)}{\Gamma(n+m)} \] 6. **Final Result**: Thus, the value of the integral is: \[ I = \frac{1}{2} B(n, m) = \frac{1}{2} \cdot \frac{\Gamma(n) \Gamma(m)}{\Gamma(n+m)} \]
Promotional Banner

Topper's Solved these Questions

  • TIPS

    FIITJEE|Exercise NUMERICAL BASED QUESTIONS|23 Videos
  • TIPS

    FIITJEE|Exercise NUERICAL DECIMAL BASED QUATIONS|20 Videos
  • TIPS

    FIITJEE|Exercise MCQ (MULTIPLE CORRECT)|37 Videos
  • TEST PAPERS

    FIITJEE|Exercise MATHEMATICS|328 Videos
  • TRIGNOMETRIC RATIOS AND IDENTITIES

    FIITJEE|Exercise All Questions|1 Videos

Similar Questions

Explore conceptually related problems

If m gt 0, n gt 0 , the definite integral l=int_(0)^(1)x^(m-1)(1-x)^(n-1)dx depends upon the vlaues of m and n and is denoted by beta(m,n) , called the beta function. E.g. int_(0)^(1)x^(4)(1-x)^(5)dx=int_(0)^(1)x^(5-1)(1-x)^(6-1)dx=beta(5, 6) and int_(0)^(1)x^(5//2)(1-x)^(-1//2)dx=int_(0)^(1)x^(7//2-1)(1-x)^(1//2-1)dx=beta((7)/(2),(1)/(2)) . Obviously, beta(n, m)=beta(m, n) . If int_(0)^(n)(1-(x)/(n))^(n)x^(k-1)dx=R beta(k, n+1) , then R is equal to

If mgt0, ngt0 , the definite integral I=int_0^1 x^(m-1)(1-x)^(n-1)dx depends upon the values of m and n is denoted by beta(m,n) , called the beta function.For example, int_0^1 x^3 (1-x)^4dx=int_0^1 x^(4-1) (1-x)^(5-1) dx=beta(4,5) and int_0^1 x^(3/2) (1-x)^((-1)/2)dx=int_0^1 x^(5/2-1) (1-x)^(1/2-1)dx=beta(5/2,1/2) .Obviously, beta(n,m)=beta(m,n) .Now answer the question:The integral int_0^(pi/2) cos^(2m)theta sin^(2n)theta d theta= (A) 1/2beta(m+1/2,n+1/2) (B) 2beta(2m,2n) (C) beta(2m+1,2n+1) (D) none of these

If mgt0, ngt0 , the definite integral I=int_0^1 x^(m-1)(1-x)^(n-1)dx depends upon the values of m and n is denoted by beta(m,n) , called the beta function.For example, int_0^1 x^3 (1-x)^4dx=int_0^1 x^(4-1) (1-x)^(5-1) dx=beta(4,5) and int_0^1 x^(3/2) (1-x)^((-1)/2)dx=int_0^1 x^(5/2-1) (1-x)^(1/2-1)dx=beta(5/2,1/2) .Obviously, beta(n,m)=beta(m,n) .Now answer the question:If int_0^oo x^(m-1)/(1+x)^(m+n)dx=k int_0^oo x^(n-1)/(1+x)^(m+n)dx , then k is equal to (A) m/n (B) 1 (C) n/m (D) none of these

int_(0)^(1) x (1 -x)^(n) dx=?

If mgt0, ngt0 , the definite integral I=int_0^1 x^(m-1)(1-x)^(n-1)dx depends upon the values of m and n is denoted by beta(m,n) , called the beta function.For example, int_0^1 x^3 (1-x)^4dx=int_0^1 x^(4-1) (1-x)^(5-1) dx=beta(4,5) and int_0^1 x^(3/2) (1-x)^((-1)/2)dx=int_0^1 x^(5/2-1) (1-x)^(1/2-1)dx=beta(5/2,1/2) .Obviously, beta(n,m)=beta(m,n) .Now answer the question:If int_0^2 (8-x^3)^((-1)/3)dx=kbeta(1/3,2/3) , then k equals to (A) 1 (B) 1/2 (C) 1/3 (D) 1/4

Evaluate the definite integrals int_(0)^(1)(dx)/(1-x^(2))

evaluate int_(0)^(1)x^(2)(1-x)^(n)dx

FIITJEE-TIPS-PARAGRAPH BASED (MULTIPLE CHOICE) (COMPREHENSION - I)
  1. Functional Equations: A functional equation is an equation, which rela...

    Text Solution

    |

  2. Functional Equations: A functional equation is an equation, which rela...

    Text Solution

    |

  3. If m gt 0, n gt 0, the definite integral l=int(0)^(1)x^(m-1)(1-x)^(n-1...

    Text Solution

    |

  4. If m gt 0, n gt 0, the definite integral l=int(0)^(1)x^(m-1)(1-x)^(n-1...

    Text Solution

    |

  5. If m gt 0, n gt 0, the definite integral l=int(0)^(1)x^(m-1)(1-x)^(n-1...

    Text Solution

    |

  6. Let the roots f(x)=x be alpha and beta where f(x) is quadratic polynom...

    Text Solution

    |

  7. Let the roots f(x)=x be alpha and beta where f(x) is quadratic polynom...

    Text Solution

    |

  8. Let the roots f(x)=x be alpha and beta where f(x) is quadratic polynom...

    Text Solution

    |

  9. Suppose two curves u(x) and v(x) meet at points with abscissae x(1) an...

    Text Solution

    |

  10. Suppose two curves u(x) and v(x) meet at points with abscissae x(1) an...

    Text Solution

    |

  11. Suppose two curves u(x) and v(x) meet at points with abscissae x(1) an...

    Text Solution

    |

  12. If a function is invertible the graph of its inverse is the mirror ima...

    Text Solution

    |

  13. If a function is invertible the graph of its inverse is the mirror ima...

    Text Solution

    |

  14. To find the point of contact P-=(x(1), y(1)) of a tangent to the graph...

    Text Solution

    |

  15. The equation |ln mx|=px where m is a positive constant has exately two...

    Text Solution

    |

  16. In some cases of integration, we take recourse to the method of succes...

    Text Solution

    |

  17. In some cases of integration, we take recourse to the method of succes...

    Text Solution

    |

  18. Any curve which cuts every member of a given family of curve is called...

    Text Solution

    |

  19. Any curve which cuts every member of a given family of curve is called...

    Text Solution

    |

  20. A function is called one - one if each element of domain has a distinc...

    Text Solution

    |