Home
Class 12
MATHS
If f(x)=x(x-1), 0 le x le 1, and f(x+1)=...

If `f(x)=x(x-1), 0 le x le 1, and f(x+1)=f(x) AA x in R`, then `|int_(2)^(4)f(x)dx|` is _____________

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral \( | \int_{2}^{4} f(x) \, dx | \) where \( f(x) = x(x - 1) \) for \( 0 \leq x \leq 1 \) and \( f(x + 1) = f(x) \) for \( x \in \mathbb{R} \). This indicates that \( f(x) \) is a periodic function with a period of 1. ### Step-by-Step Solution: 1. **Identify the Periodicity of \( f(x) \)**: Since \( f(x + 1) = f(x) \), we know that \( f(x) \) is periodic with a period of 1. Therefore, we can evaluate the integral from 2 to 4 by breaking it down into intervals of length 1. 2. **Break Down the Integral**: We can express the integral as: \[ \int_{2}^{4} f(x) \, dx = \int_{2}^{3} f(x) \, dx + \int_{3}^{4} f(x) \, dx \] Because of the periodicity, we have: \[ f(x) = f(x - 2) \text{ for } x \in [2, 3] \text{ and } f(x) = f(x - 3) \text{ for } x \in [3, 4] \] Thus, we can rewrite: \[ \int_{2}^{3} f(x) \, dx = \int_{0}^{1} f(x) \, dx \] \[ \int_{3}^{4} f(x) \, dx = \int_{0}^{1} f(x) \, dx \] 3. **Combine the Integrals**: Therefore, we can combine the integrals: \[ \int_{2}^{4} f(x) \, dx = \int_{0}^{1} f(x) \, dx + \int_{0}^{1} f(x) \, dx = 2 \int_{0}^{1} f(x) \, dx \] 4. **Calculate \( \int_{0}^{1} f(x) \, dx \)**: Now we need to calculate \( \int_{0}^{1} f(x) \, dx \): \[ f(x) = x(x - 1) = x^2 - x \] Thus, \[ \int_{0}^{1} f(x) \, dx = \int_{0}^{1} (x^2 - x) \, dx \] We can compute this integral: \[ = \left[ \frac{x^3}{3} - \frac{x^2}{2} \right]_{0}^{1} = \left( \frac{1^3}{3} - \frac{1^2}{2} \right) - \left( 0 - 0 \right) \] \[ = \frac{1}{3} - \frac{1}{2} = \frac{2}{6} - \frac{3}{6} = -\frac{1}{6} \] 5. **Final Calculation**: Now substituting back, we have: \[ \int_{2}^{4} f(x) \, dx = 2 \left(-\frac{1}{6}\right) = -\frac{2}{6} = -\frac{1}{3} \] Therefore, \[ | \int_{2}^{4} f(x) \, dx | = \left| -\frac{1}{3} \right| = \frac{1}{3} \] ### Final Answer: \[ | \int_{2}^{4} f(x) \, dx | = \frac{1}{3} \]
Promotional Banner

Topper's Solved these Questions

  • TIPS

    FIITJEE|Exercise NUMERICAL BASED QUESTIONS|23 Videos
  • TEST PAPERS

    FIITJEE|Exercise MATHEMATICS|328 Videos
  • TRIGNOMETRIC RATIOS AND IDENTITIES

    FIITJEE|Exercise All Questions|1 Videos

Similar Questions

Explore conceptually related problems

Let |f (x)| le sin ^(2) x, AA x in R, then

if f(x)=|x-1| then int_(0)^(2)f(x)dx is

If f(x)=min(|x|,1-|x|,(1)/(4))AA x in R, then find the value of int_(-1)^(1)f(x)dx

If {:(f(x)=x^(2)", if "0 le x le 1),(" "= sqrt(x)", if " 1 le x le 2","):} then int_(0)^(2)f(x)dx=

If f(x)=(x)/(1+(In x)(ln x)...oo)AA x in[1,oo) then int_(1)^(2e)f(x)dx equals:

Let the function f be defined by f (x) = |x-1| -1/2, 0 le x le 2, f (x +2 ) = f (x) for all x in R. Evaluate (i) int _(0) ^(100) f (x) dx (ii) int _(0) ^(1)| f(2x ) |dx

If f(x)=[{:(sqrt(1-x), , , 0 le x le 1),((7x-6)^(-1) , , ,1 le x le 2):} then int_(0)^(2)f(x)dx equals

Let f(x) = (x^(2) + 4x + 1)/( x^(2) + x + 1), x inR If m le f(x) le M AA x in R , then (1)/(2) (M - m) = _______

" if " f(x) ={ underset( 5x" "2 le x le 3) (3x+ 4,0 le x le 2), then int_(0)^(3) f(x) dx=?

If function f(x) = x-|x-x^(2)|, -1 le x le 1 then f is

FIITJEE-TIPS-NUERICAL DECIMAL BASED QUATIONS
  1. If {x} denotes the fractiona part of x, then {(4^(2n))/(15)}, n in N, ...

    Text Solution

    |

  2. Period of sin.(pi)/(4)[x]+sin.(pix)/(2)+tan.(pi)/(3)+sin.(pit)/(4) is

    Text Solution

    |

  3. The period of the function f(t)=sin.(pit)/(3)+sin.(pit)/(4) is

    Text Solution

    |

  4. The value of lim(xrarroo)(x^(3)sin(1//x)-2x^(2))/(1+3x^(2)) is

    Text Solution

    |

  5. Let fp(alpha)=(cos(alpha/p^2)+i sin(alpha/p^2))+((cos)(2alpha)/p^2+isi...

    Text Solution

    |

  6. Evaluate underset(xto0)lim(1-cos(1-cosx))/(x^(4)).

    Text Solution

    |

  7. The value of int(-1)^(1)g(x)-g-(-x)+[x]dx where [.] is the greatest fu...

    Text Solution

    |

  8. Tet alpha, beta and gamma be the roots of f(x) = x^3 + x^2 - 5x - 1 = ...

    Text Solution

    |

  9. If a, b, c, d, e and f are non negative real numbers such that a +b+...

    Text Solution

    |

  10. Let f(x)=cospix+10x+3x^2+x^3,-2lt=xlt=3. The absolute minimum value of...

    Text Solution

    |

  11. If int(sqrt(cotx))/(cosx cos x)dx=a sqrt(cotx)+b, then

    Text Solution

    |

  12. If f(x+1)+f(x+7)=0, x in R , then possible value of t for which inta^(...

    Text Solution

    |

  13. f(x)={{:(3[x]-5(|x|)/(x)",",x ne0),(2",", x=0):}, then int(-3//2)^(2)f...

    Text Solution

    |

  14. If f(x)=x(x-1), 0 le x le 1, and f(x+1)=f(x) AA x in R, then |int(2)^(...

    Text Solution

    |

  15. int2^3(x^2dx)/(2x^2-10 x+25)

    Text Solution

    |

  16. Let f(x) = x-[x], for every real number x, where [x] is integral part ...

    Text Solution

    |

  17. Let f:(0, oo) rarr R and F(x^(2))=int(0)^(x^(2))f(t)dt. " If "F(x^(2))...

    Text Solution

    |

  18. intx^6sin(5x^7)dx=k/5cos(5x^7)+c ,then k=

    Text Solution

    |

  19. If int(sqrt(cotx))/(sinx cos x)dx=A sqrt(cotx)+B, then A is equal to

    Text Solution

    |

  20. If int1/(xsqrt(1-x^3))dx=alog|(sqrt(1-x^3)-1)/(sqrt(1-x^3)+1)|+b ,t h...

    Text Solution

    |