Home
Class 12
MATHS
Solve |sin 3x + sinx | + |sin 3x - sin...

Solve ` |sin 3x + sinx | + |sin 3x - sinx |= sqrt3, - (pi)/(2) lt x lt (pi)/(2).`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( | \sin 3x + \sin x | + | \sin 3x - \sin x | = \sqrt{3} \) for \( -\frac{\pi}{2} < x < \frac{\pi}{2} \), we will break it down into manageable steps. ### Step 1: Analyze the Absolute Values The expression involves absolute values, which means we need to consider different cases based on the signs of \( \sin 3x + \sin x \) and \( \sin 3x - \sin x \). ### Step 2: Case Analysis 1. **Case 1:** \( \sin 3x + \sin x \geq 0 \) and \( \sin 3x - \sin x \geq 0 \) - Here, the equation simplifies to: \[ \sin 3x + \sin x + \sin 3x - \sin x = \sqrt{3} \] \[ 2 \sin 3x = \sqrt{3} \] \[ \sin 3x = \frac{\sqrt{3}}{2} \] - The solutions for \( 3x \) are: \[ 3x = \frac{\pi}{3} + 2k\pi \quad \text{or} \quad 3x = \frac{2\pi}{3} + 2k\pi \] - Thus, \[ x = \frac{\pi}{9} + \frac{2k\pi}{3} \quad \text{or} \quad x = \frac{2\pi}{9} + \frac{2k\pi}{3} \] - For \( k = 0 \): \[ x = \frac{\pi}{9}, \frac{2\pi}{9} \] 2. **Case 2:** \( \sin 3x + \sin x \geq 0 \) and \( \sin 3x - \sin x < 0 \) - The equation simplifies to: \[ \sin 3x + \sin x - (\sin 3x - \sin x) = \sqrt{3} \] \[ 2 \sin x = \sqrt{3} \] \[ \sin x = \frac{\sqrt{3}}{2} \] - The solution for \( x \) is: \[ x = \frac{\pi}{3} + 2k\pi \] - For \( k = 0 \): \[ x = \frac{\pi}{3} \] 3. **Case 3:** \( \sin 3x + \sin x < 0 \) and \( \sin 3x - \sin x < 0 \) - The equation simplifies to: \[ -(\sin 3x + \sin x) - (\sin 3x - \sin x) = \sqrt{3} \] \[ -2 \sin 3x = \sqrt{3} \] \[ \sin 3x = -\frac{\sqrt{3}}{2} \] - The solutions for \( 3x \) are: \[ 3x = -\frac{\pi}{3} + 2k\pi \quad \text{or} \quad 3x = -\frac{2\pi}{3} + 2k\pi \] - Thus, \[ x = -\frac{\pi}{9} + \frac{2k\pi}{3} \quad \text{or} \quad x = -\frac{2\pi}{9} + \frac{2k\pi}{3} \] - For \( k = 0 \): \[ x = -\frac{\pi}{9}, -\frac{2\pi}{9} \] ### Step 3: Compile All Solutions From the cases analyzed, we have the following potential solutions: - From Case 1: \( x = \frac{\pi}{9}, \frac{2\pi}{9} \) - From Case 2: \( x = \frac{\pi}{3} \) - From Case 3: \( x = -\frac{\pi}{9}, -\frac{2\pi}{9} \) ### Step 4: Check Validity Within the Interval We need to ensure all solutions are within the interval \( -\frac{\pi}{2} < x < \frac{\pi}{2} \): - \( \frac{\pi}{9} \) is valid. - \( \frac{2\pi}{9} \) is valid. - \( \frac{\pi}{3} \) is valid. - \( -\frac{\pi}{9} \) is valid. - \( -\frac{2\pi}{9} \) is valid. ### Final Solutions Thus, the final solutions are: \[ x = -\frac{2\pi}{9}, -\frac{\pi}{9}, \frac{\pi}{9}, \frac{2\pi}{9}, \frac{\pi}{3} \]
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICS

    FIITJEE|Exercise ASSIGNMENT (SECTION(I) MCQ(SINGLE CORRECT)|130 Videos
  • MATHEMATICS

    FIITJEE|Exercise OBJECTIVE|84 Videos
  • MATHEMATICAL REASONING

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-2|18 Videos
  • MATHEMATICS TIPS

    FIITJEE|Exercise NUMERICAL DECIMAL BASED QUESTIONS|21 Videos

Similar Questions

Explore conceptually related problems

Solve |sin3x+sin x|+|sin3x-sin x|=sqrt(3),-(pi)/(2)

Solve : tan^(-1)((cos x)/(1+sin x)) , -(pi)/(2) lt x lt (pi)/(2)

Show that 2 sin x + tanx ge 3x , where 0 le x lt (pi)/(2)

If : sin 5x + sin 3x + sin x = 0 , where 0 lt x le (pi)/2 , then : x =

cos^(-1)((sin x+cos x)/(sqrt(2))),(pi)/(4) lt x lt (5pi)/4

Solve: cos 3x + sqrt3 sin 3x + sqrt2 lt 0 .

Express tan^(-1) ((cos x )/( 1- sin x) ) , ( -3 pi)/(2) lt x lt (pi)/(2) in the simplest form

Let f(x) = {(-2sin x, ",","if" x le -(pi)/2),(A sin x + B, ",", "if"-(pi)/2 lt x lt (pi)/2 ),(cos x, ",", "if" x ge (pi)/2 ):} Then

FIITJEE-MATHEMATICS -NUMERICAL DECIMAL BASED QUESTIONS
  1. Solve |sin 3x + sinx | + |sin 3x - sinx |= sqrt3, - (pi)/(2) lt x lt...

    Text Solution

    |

  2. If the equation ax ^(2) - 6xy +y ^(2) + 2gx + 2fy + x =0 represents a ...

    Text Solution

    |

  3. If the lines (x-2)/(1)=(y-3)/(1)=(z-4)/(lamda) and (x-1)/(lamda)=(y-4)...

    Text Solution

    |

  4. If a circle having centre at (alpha, beta) cut the circles x^2 + y^2 -...

    Text Solution

    |

  5. If ABC is a triangle such that A= (1,2) and B = (5,5) with BC =9 and ...

    Text Solution

    |

  6. The centres of three circles A, B and C can collinear with the centre ...

    Text Solution

    |

  7. PQ is chord of contract of tangents from point T to a parabola. If PQ ...

    Text Solution

    |

  8. The circum circle of triangle ABC is x^2 +y^2-5x-4y + 6=0 , if a parab...

    Text Solution

    |

  9. Coordinates of the point on the stratight line x +y =4, which is neare...

    Text Solution

    |

  10. The latus rectum of a conic section is the width of the function throu...

    Text Solution

    |

  11. If QR is chord contact when two tangents are drawn from origin to the ...

    Text Solution

    |

  12. If sum (r =1) ^(n) (cos (2rx))/(sin (r x + (pi)/(4)))= (2 sin (50x)sin...

    Text Solution

    |

  13. The number of distinct solution of cos(x)/(4)=cos(x) in x in [0,24 pi...

    Text Solution

    |

  14. In Delta ABC, a ^(2) + c^(2)= 2002 b ^(2) then (cotB)/(cot A + cotC) ...

    Text Solution

    |

  15. Let O be the circumcentre of acute angled Delta ABC and let r (1) ,r (...

    Text Solution

    |

  16. If in triangle A B C ,sumsinA/2=6/5a n dsumI I1=9 (where I1,I2a n dI3 ...

    Text Solution

    |