Home
Class 12
MATHS
In a Delta ABC, B = pi//8 and C = 5pi //...

In a `Delta ABC, B = pi//8 and C = 5pi //8 and ` the atitude `AD=h.` Then h:a is equal to

A

`2:1`

B

`3:1`

C

`1:3`

D

`1:2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the ratio of the altitude \( h \) from vertex \( A \) to side \( BC \) in triangle \( ABC \) to the length of side \( a \) (which is the length of \( BC \)). Given the angles \( B = \frac{\pi}{8} \) and \( C = \frac{5\pi}{8} \), we can find angle \( A \) and then apply the sine rule. ### Step-by-Step Solution: 1. **Find Angle A**: \[ A = \pi - B - C = \pi - \frac{\pi}{8} - \frac{5\pi}{8} = \pi - \frac{6\pi}{8} = \pi - \frac{3\pi}{4} = \frac{\pi}{4} \] **Hint**: Use the property that the sum of angles in a triangle is \( \pi \). 2. **Apply the Sine Rule**: The sine rule states that: \[ \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \] Here, we need to express \( h \) in terms of \( a \). The altitude \( h \) can be expressed as: \[ h = b \cdot \sin C = c \cdot \sin B \] 3. **Expressing \( h \) in terms of \( a \)**: From the sine rule: \[ b = \frac{a \cdot \sin B}{\sin A} \quad \text{and} \quad c = \frac{a \cdot \sin C}{\sin A} \] Therefore: \[ h = b \cdot \sin C = \left(\frac{a \cdot \sin B}{\sin A}\right) \cdot \sin C \] 4. **Calculate \( \sin A, \sin B, \sin C \)**: - \( \sin A = \sin \frac{\pi}{4} = \frac{\sqrt{2}}{2} \) - \( \sin B = \sin \frac{\pi}{8} = \frac{\sqrt{2 - \sqrt{2}}}{2} \) - \( \sin C = \sin \frac{5\pi}{8} = \sin\left(\frac{\pi}{2} - \frac{\pi}{8}\right) = \cos \frac{\pi}{8} = \frac{\sqrt{2 + \sqrt{2}}}{2} \) 5. **Substituting back into the equation for \( h \)**: \[ h = \left(\frac{a \cdot \frac{\sqrt{2 - \sqrt{2}}}{2}}{\frac{\sqrt{2}}{2}}\right) \cdot \frac{\sqrt{2 + \sqrt{2}}}{2} \] Simplifying this gives: \[ h = a \cdot \frac{\sqrt{2 - \sqrt{2}} \cdot \sqrt{2 + \sqrt{2}}}{2} \] 6. **Simplifying the expression**: Using the identity \( \sqrt{2 - \sqrt{2}} \cdot \sqrt{2 + \sqrt{2}} = \sqrt{(2 - \sqrt{2})(2 + \sqrt{2})} = \sqrt{4 - 2} = \sqrt{2} \): \[ h = a \cdot \frac{\sqrt{2}}{2} \] 7. **Finding the ratio \( \frac{h}{a} \)**: \[ \frac{h}{a} = \frac{\sqrt{2}}{2} \] Therefore, the ratio \( h:a \) is: \[ h:a = 1:\sqrt{2} \] ### Final Ratio: To express it in a simpler form, we can multiply both sides by \( \sqrt{2} \): \[ h:a = 1:2 \] ### Conclusion: Thus, the ratio \( h:a \) is \( 1:2 \).
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICS

    FIITJEE|Exercise OBJECTIVE|84 Videos
  • MATHEMATICS

    FIITJEE|Exercise ASSERTION REASONING|8 Videos
  • MATHEMATICS

    FIITJEE|Exercise NUMERICAL DECIMAL BASED QUESTIONS|15 Videos
  • MATHEMATICAL REASONING

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-2|18 Videos
  • MATHEMATICS TIPS

    FIITJEE|Exercise NUMERICAL DECIMAL BASED QUESTIONS|21 Videos

Similar Questions

Explore conceptually related problems

In a Delta ABC,B=(pi)/(8) and C=(5 pi)/(8) and the altitude AD=h. Then h: a is equal to

In a triangleABC,B=pi/8, C=(5pi)/(8) . The altitude from A to the side BC, is

H is orthocenter of the triangle ABC, then AH is equal to :

In a Delta ABC, if A=(4 pi)/(9) and B=(2 pi)/(9), then a^(2)-b^(2) is equal to

In Delta ABC , if : a = 5, b = 4, A = pi/2 + B , then : /_C =

In Delta ABC,a=2b and |A-B|=(pi)/(3) then /_C is

If in a Delta ABC,/_B=(2 pi)/(3) then cos A+cos C lie in

In a triangle ABC, medians AD and CE are drawn.If AD=5,/_DAC=(pi)/(8) and /_ACE=(pi)/(4) then the area of the triangle ABC is equal to (5a)/(b), then a+b is equal to

In triangle ABC, dedians AD and CE are drawn.If /_DAC=(pi)/(8), and /_ACE=(pi)/(4) then the area of the triangle ABC is equal to (25)/(9) (b) (25)/(3)(c)(25)/(18) (d) (10)/(3)

FIITJEE-MATHEMATICS -ASSIGNMENT (SECTION(I) MCQ(SINGLE CORRECT)
  1. If in any triangle r=r (1) - r(2) - r(3), then the triangle is

    Text Solution

    |

  2. In triangle A B C ,a : b : c=4:5: 6. The ratio of the radius of the ci...

    Text Solution

    |

  3. In a Delta ABC, B = pi//8 and C = 5pi //8 and the atitude AD=h. Then ...

    Text Solution

    |

  4. In the Delta ABCA gt B. If the measures of A and B satisfy the equatio...

    Text Solution

    |

  5. In a triangle ABC, angle C = 60^(@) and angle A = 75^(@). If D is the ...

    Text Solution

    |

  6. If in a Delta ABC, angle A = 45^(@) , angle B = 75^(@), then

    Text Solution

    |

  7. In triangle ABC, if (1-r1/r2)(1-r2/r3)=2 then the triangle is

    Text Solution

    |

  8. The value of (3 + cot 76^(@)cot 16^(@))/(cot 76^(@) + cot 16^(@))=

    Text Solution

    |

  9. If cos(y-z)+cos(z-x)+cos(x-y)=-3/2, prove that cos x + cos y + cos z =...

    Text Solution

    |

  10. If cos (A-B)=3//5 and tan A tan B=2 , then which one of the following...

    Text Solution

    |

  11. General solution of the equation tan theta + tan 4 theta + tan 7 the...

    Text Solution

    |

  12. The equation "sin"^(6) x + "cos"^(6) x = lambda, has a solution if

    Text Solution

    |

  13. Find all the values of alpha for which the equation sin ^(4) x+ cos^(4...

    Text Solution

    |

  14. The general solution of the equation sin^4x + cos^4x= sinx cos x is

    Text Solution

    |

  15. The number of values of x between 0 and 2pi satisfying the equation 2c...

    Text Solution

    |

  16. If A = cos ^(2) alpha + cos ^2(alpha + beta)- 2 cos alpha cos beta c...

    Text Solution

    |

  17. If the angle A of a triangle ABC is given by the equation 5 cos A + 3 ...

    Text Solution

    |

  18. If 1 < x < sqrt2, then number of solutions of the equation tan^-1(x-1)...

    Text Solution

    |

  19. The value of sin ^(-1) (-(1)/(sqrt2)) + cos ^(-1) (-(1)/(2)) - tan ^(-...

    Text Solution

    |

  20. solve sin^(-1) (sin 5) gt x^(2) - 4x

    Text Solution

    |