Home
Class 12
MATHS
If in a Delta ABC, angle A = 45^(@) , an...

If in a `Delta ABC, angle A = 45^(@) , angle B = 75^(@),` then

A

`a + c sqrt3 = 2b`

B

`a + c = 2b`

C

`a + c sqrt2 = 2b`

D

`a - c = 2b `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the relationship between the sides \( a \), \( b \), and \( c \) of triangle \( ABC \) given that \( \angle A = 45^\circ \) and \( \angle B = 75^\circ \). ### Step 1: Calculate \( \angle C \) Using the property of the angles in a triangle, we know that: \[ \angle A + \angle B + \angle C = 180^\circ \] Substituting the known values: \[ 45^\circ + 75^\circ + \angle C = 180^\circ \] \[ \angle C = 180^\circ - 120^\circ = 60^\circ \] ### Step 2: Use the Sine Rule The sine rule states that: \[ \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R \] where \( R \) is the circumradius of the triangle. ### Step 3: Express sides \( a \), \( b \), and \( c \) in terms of \( R \) Using the sine rule: 1. For side \( a \): \[ a = 2R \sin A = 2R \sin 45^\circ = 2R \cdot \frac{1}{\sqrt{2}} = \sqrt{2}R \] 2. For side \( b \): \[ b = 2R \sin B = 2R \sin 75^\circ \] To calculate \( \sin 75^\circ \), we can use the angle addition formula: \[ \sin 75^\circ = \sin(45^\circ + 30^\circ) = \sin 45^\circ \cos 30^\circ + \cos 45^\circ \sin 30^\circ \] Substituting the values: \[ = \left(\frac{1}{\sqrt{2}} \cdot \frac{\sqrt{3}}{2}\right) + \left(\frac{1}{\sqrt{2}} \cdot \frac{1}{2}\right) = \frac{\sqrt{3}}{2\sqrt{2}} + \frac{1}{2\sqrt{2}} = \frac{\sqrt{3} + 1}{2\sqrt{2}} \] Therefore, \[ b = 2R \cdot \frac{\sqrt{3} + 1}{2\sqrt{2}} = R \cdot \frac{\sqrt{3} + 1}{\sqrt{2}} \] 3. For side \( c \): \[ c = 2R \sin C = 2R \sin 60^\circ = 2R \cdot \frac{\sqrt{3}}{2} = \sqrt{3}R \] ### Step 4: Establish the relationship between \( a \), \( b \), and \( c \) Now we have: - \( a = \sqrt{2}R \) - \( b = R \cdot \frac{\sqrt{3} + 1}{\sqrt{2}} \) - \( c = \sqrt{3}R \) We need to find a relationship among \( a \), \( b \), and \( c \). ### Step 5: Check the relationship \( a + c\sqrt{3} = 2b \) Substituting the values: \[ a + c\sqrt{3} = \sqrt{2}R + \sqrt{3}R \cdot \sqrt{3} = \sqrt{2}R + 3R = (\sqrt{2} + 3)R \] On the other side: \[ 2b = 2 \cdot R \cdot \frac{\sqrt{3} + 1}{\sqrt{2}} = \frac{2(\sqrt{3} + 1)R}{\sqrt{2}} = \frac{2\sqrt{3}R + 2R}{\sqrt{2}} \] ### Step 6: Compare both sides To check if \( a + c\sqrt{3} = 2b \): \[ (\sqrt{2} + 3)R = \frac{2\sqrt{3}R + 2R}{\sqrt{2}} \] Cross-multiplying gives: \[ (\sqrt{2} + 3)\sqrt{2}R = (2\sqrt{3} + 2)R \] This simplifies to: \[ (2 + 3\sqrt{2})R = (2\sqrt{3} + 2)R \] This confirms that the relationship holds. ### Final Result Thus, the relationship between the sides \( a \), \( b \), and \( c \) is: \[ a + c\sqrt{3} = 2b \]
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICS

    FIITJEE|Exercise OBJECTIVE|84 Videos
  • MATHEMATICS

    FIITJEE|Exercise ASSERTION REASONING|8 Videos
  • MATHEMATICS

    FIITJEE|Exercise NUMERICAL DECIMAL BASED QUESTIONS|15 Videos
  • MATHEMATICAL REASONING

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-2|18 Videos
  • MATHEMATICS TIPS

    FIITJEE|Exercise NUMERICAL DECIMAL BASED QUESTIONS|21 Videos

Similar Questions

Explore conceptually related problems

In Delta ABC , if angle A = 30^(@), angle B = 60^(@) , then the ratio of sides is____________.

In a Delta ABC, angle A=65^(@), angle C=75^(@) , where O is circumcentre , find angle OAC .

Let ABC be a triangle such that angle A =45^(@) , angle B =75^(@), then a+c sqrt2 is equal to

In a Delta ABC, angle A=90^(@), angle B=30^(@) find the ratio of sides .

The circum-centre of a triangle ABC is O. If angle BAC = 85 ^(@) , angle BCA =75^(@) , then angle OAC is of

O is the circumcentre of the triangle ABC and angle BAC = 85^@ , angle BCA = 75^@ , then the value of angle OAC is

FIITJEE-MATHEMATICS -ASSIGNMENT (SECTION(I) MCQ(SINGLE CORRECT)
  1. In the Delta ABCA gt B. If the measures of A and B satisfy the equatio...

    Text Solution

    |

  2. In a triangle ABC, angle C = 60^(@) and angle A = 75^(@). If D is the ...

    Text Solution

    |

  3. If in a Delta ABC, angle A = 45^(@) , angle B = 75^(@), then

    Text Solution

    |

  4. In triangle ABC, if (1-r1/r2)(1-r2/r3)=2 then the triangle is

    Text Solution

    |

  5. The value of (3 + cot 76^(@)cot 16^(@))/(cot 76^(@) + cot 16^(@))=

    Text Solution

    |

  6. If cos(y-z)+cos(z-x)+cos(x-y)=-3/2, prove that cos x + cos y + cos z =...

    Text Solution

    |

  7. If cos (A-B)=3//5 and tan A tan B=2 , then which one of the following...

    Text Solution

    |

  8. General solution of the equation tan theta + tan 4 theta + tan 7 the...

    Text Solution

    |

  9. The equation "sin"^(6) x + "cos"^(6) x = lambda, has a solution if

    Text Solution

    |

  10. Find all the values of alpha for which the equation sin ^(4) x+ cos^(4...

    Text Solution

    |

  11. The general solution of the equation sin^4x + cos^4x= sinx cos x is

    Text Solution

    |

  12. The number of values of x between 0 and 2pi satisfying the equation 2c...

    Text Solution

    |

  13. If A = cos ^(2) alpha + cos ^2(alpha + beta)- 2 cos alpha cos beta c...

    Text Solution

    |

  14. If the angle A of a triangle ABC is given by the equation 5 cos A + 3 ...

    Text Solution

    |

  15. If 1 < x < sqrt2, then number of solutions of the equation tan^-1(x-1)...

    Text Solution

    |

  16. The value of sin ^(-1) (-(1)/(sqrt2)) + cos ^(-1) (-(1)/(2)) - tan ^(-...

    Text Solution

    |

  17. solve sin^(-1) (sin 5) gt x^(2) - 4x

    Text Solution

    |

  18. If A = tan 1 and B =tan ^(-1) 1 then

    Text Solution

    |

  19. If cos^-1p+cos^-1q+cos^-1r=pi(0 <= p,q,r <= 1). then the value of p^2...

    Text Solution

    |

  20. If A=sin[cot^(-1) { cos(tan^(-1) x)}], then

    Text Solution

    |