Home
Class 12
MATHS
The value of sin ^(-1) (-(1)/(sqrt2)) + ...

The value of `sin ^(-1) (-(1)/(sqrt2)) + cos ^(-1) (-(1)/(2)) - tan ^(-1) (-sqrt3) + cot ^(-1) (-(1)/(sqrt3)) ` is

A

`(5pi)/(12)`

B

`(17pi)/(12)`

C

0

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sin^{-1} \left(-\frac{1}{\sqrt{2}}\right) + \cos^{-1} \left(-\frac{1}{2}\right) - \tan^{-1} \left(-\sqrt{3}\right) + \cot^{-1} \left(-\frac{1}{\sqrt{3}}\right) \), we will evaluate each term step by step. ### Step 1: Evaluate \( \sin^{-1} \left(-\frac{1}{\sqrt{2}}\right) \) The value of \( \sin^{-1} x \) is defined in the range \( \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \). Since \( \sin^{-1} \left(-\frac{1}{\sqrt{2}}\right) = -\sin^{-1} \left(\frac{1}{\sqrt{2}}\right) \), we know that: \[ \sin^{-1} \left(\frac{1}{\sqrt{2}}\right) = \frac{\pi}{4} \] Thus, \[ \sin^{-1} \left(-\frac{1}{\sqrt{2}}\right) = -\frac{\pi}{4} \] ### Step 2: Evaluate \( \cos^{-1} \left(-\frac{1}{2}\right) \) The value of \( \cos^{-1} x \) is defined in the range \( [0, \pi] \). We know that: \[ \cos \theta = -\frac{1}{2} \implies \theta = \frac{2\pi}{3} \] Thus, \[ \cos^{-1} \left(-\frac{1}{2}\right) = \frac{2\pi}{3} \] ### Step 3: Evaluate \( -\tan^{-1} \left(-\sqrt{3}\right) \) The value of \( \tan^{-1} x \) is defined in the range \( \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \). Since \( -\tan^{-1} \left(-\sqrt{3}\right) = \tan^{-1} \left(\sqrt{3}\right) \), we know that: \[ \tan \theta = \sqrt{3} \implies \theta = \frac{\pi}{3} \] Thus, \[ -\tan^{-1} \left(-\sqrt{3}\right) = \frac{\pi}{3} \] ### Step 4: Evaluate \( \cot^{-1} \left(-\frac{1}{\sqrt{3}}\right) \) The value of \( \cot^{-1} x \) is defined in the range \( (0, \pi) \). Since \( \cot^{-1} \left(-\frac{1}{\sqrt{3}}\right) = \pi - \cot^{-1} \left(\frac{1}{\sqrt{3}}\right) \), we know that: \[ \cot \theta = \frac{1}{\sqrt{3}} \implies \theta = \frac{\pi}{6} \] Thus, \[ \cot^{-1} \left(-\frac{1}{\sqrt{3}}\right) = \pi - \frac{\pi}{6} = \frac{5\pi}{6} \] ### Step 5: Combine all the evaluated terms Now we can combine all the evaluated terms: \[ \sin^{-1} \left(-\frac{1}{\sqrt{2}}\right) + \cos^{-1} \left(-\frac{1}{2}\right) - \tan^{-1} \left(-\sqrt{3}\right) + \cot^{-1} \left(-\frac{1}{\sqrt{3}}\right) \] Substituting the values we found: \[ -\frac{\pi}{4} + \frac{2\pi}{3} + \frac{\pi}{3} + \frac{5\pi}{6} \] ### Step 6: Find a common denominator and simplify The common denominator for \( 4, 3, 3, \) and \( 6 \) is \( 12 \). Converting each term: - \( -\frac{\pi}{4} = -\frac{3\pi}{12} \) - \( \frac{2\pi}{3} = \frac{8\pi}{12} \) - \( \frac{\pi}{3} = \frac{4\pi}{12} \) - \( \frac{5\pi}{6} = \frac{10\pi}{12} \) Now, adding these fractions: \[ -\frac{3\pi}{12} + \frac{8\pi}{12} + \frac{4\pi}{12} + \frac{10\pi}{12} = \frac{19\pi}{12} \] ### Final Answer Thus, the value of the expression is: \[ \frac{19\pi}{12} \]
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICS

    FIITJEE|Exercise OBJECTIVE|84 Videos
  • MATHEMATICS

    FIITJEE|Exercise ASSERTION REASONING|8 Videos
  • MATHEMATICS

    FIITJEE|Exercise NUMERICAL DECIMAL BASED QUESTIONS|15 Videos
  • MATHEMATICAL REASONING

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-2|18 Videos
  • MATHEMATICS TIPS

    FIITJEE|Exercise NUMERICAL DECIMAL BASED QUESTIONS|21 Videos

Similar Questions

Explore conceptually related problems

sin^(-1) (-1/2) + tan^(-1) (sqrt3) =

1. sin^(-1) (-1/2) = 2. tan^(-1) (-sqrt3) =

sin ^ (- 1) ((sqrt (2)) / (2)) + cos ^ (- 1) (- (1) / (2)) - tan ^ (- 1) (- sqrt (3)) + cot ^ (- 1) (- (1) / (sqrt (3)))

a=sin^(-1)(-(sqrt(2))/(2))+cos^(-1)(-(1)/(2)) and b=tan^(-1)(-sqrt(3))-cot^(-1)(-(1)/(sqrt(3))) ,then

If a=sin^(-1) (-sqrt2/2)+cos^(-1) (-1/2) and b=tan^(-1) (-sqrt3)-cot^(-1) (-1/sqrt3) , then

sin ^ (- 1) ((- sqrt (2)) / (2)) + cos ^ (- 1) ((1) / (2)) - tan ^ (- 1) (- sqrt (3)) + cot ^ (- 1) (- (1) / (sqrt (3))) =

tan^(-1)(sqrt3)-cot^(-1)(-sqrt3)

Find the value of sin^(-1)(-(sqrt(3))/(2))+cos^(-1)((1)/(2))+tan^(-1)(-(1)/(sqrt(3)))

sin^(-1)((sqrt(3))/(2))-tan^(-1)(-sqrt(3))

1. sin^(-1) (1/sqrt2) 2. cos^(-1) (sqrt3/2)

FIITJEE-MATHEMATICS -ASSIGNMENT (SECTION(I) MCQ(SINGLE CORRECT)
  1. If the angle A of a triangle ABC is given by the equation 5 cos A + 3 ...

    Text Solution

    |

  2. If 1 < x < sqrt2, then number of solutions of the equation tan^-1(x-1)...

    Text Solution

    |

  3. The value of sin ^(-1) (-(1)/(sqrt2)) + cos ^(-1) (-(1)/(2)) - tan ^(-...

    Text Solution

    |

  4. solve sin^(-1) (sin 5) gt x^(2) - 4x

    Text Solution

    |

  5. If A = tan 1 and B =tan ^(-1) 1 then

    Text Solution

    |

  6. If cos^-1p+cos^-1q+cos^-1r=pi(0 <= p,q,r <= 1). then the value of p^2...

    Text Solution

    |

  7. If A=sin[cot^(-1) { cos(tan^(-1) x)}], then

    Text Solution

    |

  8. tan^(- 1)x+tan^(- 1)\ (2x)/(1-x^2)=pi+tan^(- 1)\ (3x-x^3)/(1-3x^2),(x ...

    Text Solution

    |

  9. The numerical value of tan (cos ^(-1) "" (4)/(5) + tan ^(-1)"" (2)/(3)...

    Text Solution

    |

  10. Solve the equation sin^(-1)y x+sin^(-1)6sqrt(3)x=(-pi)/2dot

    Text Solution

    |

  11. Value of sin{tan^(-1)x+tan^(-1) (1/x)} is

    Text Solution

    |

  12. If a sectheta = 1 -b tan theta and a^2 sec^2 theta = 5 + b^2 tan^2 the...

    Text Solution

    |

  13. If tan alpha = (1)/(sqrt (x (x ^(2) + x + 1))). tan beta = (sqrtx)/(sq...

    Text Solution

    |

  14. If int (0) ^(y) cos t ^(2) dt= int (0) ^(x ^(2)) (sint)/(t ) dt then ...

    Text Solution

    |

  15. If tan theta.tan phi = sqrt ((a -b)/(a +b)), then (a -b cos 2 theta)(...

    Text Solution

    |

  16. If n=2m+1,m in N uu {0}, then int0^(pi/2)(sin nx)/(sin x) dx is equal ...

    Text Solution

    |

  17. The set of values of x, for which (tan 3x - tan 2x)/(1+tan 3x tan 2x)=...

    Text Solution

    |

  18. For 0 lt theta lt pi/2, the solutions of sigma(m-1)^(6)"cosec"(theta+(...

    Text Solution

    |

  19. The root(s) of the expression 2sin^2 theta + sin^2 2theta=2 is

    Text Solution

    |

  20. Minimum value of sec ^(2) theta + cos ^(2) theta is

    Text Solution

    |