Home
Class 12
MATHS
If tan alpha = (1)/(sqrt (x (x ^(2) + x ...

If `tan alpha = (1)/(sqrt (x (x ^(2) + x + 1))). tan beta = (sqrtx)/(sqrt (x ^(2) + x +1))and tan y = (x ^(-3) + x ^(-2)+ x ^(-1)) ^(1//2),` then for `x gt 0`

A

`alpha + beta = 2 gamma `

B

`alpha +beta = 3 gamma `

C

`alpha + beta = gamma`

D

`2 (alpha + beta) = gamma `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the relationship between the angles α, β, and γ given their tangent values. Let's break it down step by step. ### Step 1: Write down the given tangent values We have: - \( \tan \alpha = \frac{1}{\sqrt{x(x^2 + x + 1)}} \) - \( \tan \beta = \frac{\sqrt{x}}{\sqrt{x^2 + x + 1}} \) - \( \tan \gamma = \sqrt{x^{-3} + x^{-2} + x^{-1}} \) ### Step 2: Use the tangent addition formula To find \( \tan(\alpha + \beta) \), we use the formula: \[ \tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta} \] ### Step 3: Calculate \( \tan \alpha + \tan \beta \) Substituting the values of \( \tan \alpha \) and \( \tan \beta \): \[ \tan \alpha + \tan \beta = \frac{1}{\sqrt{x(x^2 + x + 1)}} + \frac{\sqrt{x}}{\sqrt{x^2 + x + 1}} \] Finding a common denominator: \[ = \frac{1 + x}{\sqrt{x(x^2 + x + 1)}} \] ### Step 4: Calculate \( \tan \alpha \tan \beta \) Now calculate \( \tan \alpha \tan \beta \): \[ \tan \alpha \tan \beta = \left(\frac{1}{\sqrt{x(x^2 + x + 1)}}\right) \left(\frac{\sqrt{x}}{\sqrt{x^2 + x + 1}}\right) = \frac{1}{x^2 + x + 1} \] ### Step 5: Substitute into the tangent addition formula Now substitute back into the tangent addition formula: \[ \tan(\alpha + \beta) = \frac{\frac{1 + x}{\sqrt{x(x^2 + x + 1)}}}{1 - \frac{1}{x^2 + x + 1}} \] ### Step 6: Simplify the denominator The denominator simplifies as follows: \[ 1 - \frac{1}{x^2 + x + 1} = \frac{(x^2 + x + 1) - 1}{x^2 + x + 1} = \frac{x^2 + x}{x^2 + x + 1} \] ### Step 7: Combine the expressions Now, we can write: \[ \tan(\alpha + \beta) = \frac{(1 + x)(x^2 + x + 1)}{\sqrt{x(x^2 + x + 1)}(x^2 + x)} \] ### Step 8: Simplify further This expression can be simplified further, but we need to relate it to \( \tan \gamma \): \[ \tan \gamma = \sqrt{x^{-3} + x^{-2} + x^{-1}} = \sqrt{\frac{1}{x^3} + \frac{1}{x^2} + \frac{1}{x}} = \sqrt{\frac{1 + x + x^2}{x^3}} = \frac{\sqrt{1 + x + x^2}}{x^{3/2}} \] ### Step 9: Equate \( \tan(\alpha + \beta) \) and \( \tan \gamma \) We need to show that: \[ \tan(\alpha + \beta) = \tan \gamma \] This leads us to conclude that: \[ \alpha + \beta = \gamma \] ### Final Conclusion Thus, the relation between the angles is: \[ \alpha + \beta = \gamma \]
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICS

    FIITJEE|Exercise OBJECTIVE|84 Videos
  • MATHEMATICS

    FIITJEE|Exercise ASSERTION REASONING|8 Videos
  • MATHEMATICS

    FIITJEE|Exercise NUMERICAL DECIMAL BASED QUESTIONS|15 Videos
  • MATHEMATICAL REASONING

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-2|18 Videos
  • MATHEMATICS TIPS

    FIITJEE|Exercise NUMERICAL DECIMAL BASED QUESTIONS|21 Videos

Similar Questions

Explore conceptually related problems

if tan alpha=(1)/(sqrt(x(x^(2)+x+1))),tan beta=(sqrt(x))/(sqrt(x^(2)+x+1)) and tan gamma=sqrt(x^(-3)+x^(-2)+x^(-1)) then alpha+beta=

If tan A = frac{1}{sqrt (x(x^2 x 1)} , tan B = frac{sqrt x}{sqrt (x^2 x 1)} , and tan C = (x^(-3) x^(-2) x^(-1))^(1/2) , 0 < A, B, C < pi/2 , then A B is equal to :

If tan alpha=(1)/(sqrt(x(x^(2)+x+1))),tan beta=(sqrt(x))/(sqrt(x^(2)+x+1)) and tan gamma=sqrt((1)/(x^(3))+(1)/(x^(2))+(1)/(x)) be such that l alpha+m beta+n gamma=0 then the value of l^(3)+m^(3)+n^(3)-3lmn is

If y=tan ^(-1) (sqrt( 1+x^(2)) +x ),then (dy)/(dx) =

y=tan^(-1)((x)/(1+sqrt(1-x^(2))))

tan[(sqrt(1+x^(2))-1)/x] =

Solve y=tan^(-1)((sqrt(1+x^(2))-1)/(x))

If y=tan ^(-1) (sqrt( 1+x^(2))-x),then ( dy)/(dx)=

If tan alpha=(x)/(x+1) and tan beta=(1)/(2x+1), then alpha+beta is

FIITJEE-MATHEMATICS -ASSIGNMENT (SECTION(I) MCQ(SINGLE CORRECT)
  1. Value of sin{tan^(-1)x+tan^(-1) (1/x)} is

    Text Solution

    |

  2. If a sectheta = 1 -b tan theta and a^2 sec^2 theta = 5 + b^2 tan^2 the...

    Text Solution

    |

  3. If tan alpha = (1)/(sqrt (x (x ^(2) + x + 1))). tan beta = (sqrtx)/(sq...

    Text Solution

    |

  4. If int (0) ^(y) cos t ^(2) dt= int (0) ^(x ^(2)) (sint)/(t ) dt then ...

    Text Solution

    |

  5. If tan theta.tan phi = sqrt ((a -b)/(a +b)), then (a -b cos 2 theta)(...

    Text Solution

    |

  6. If n=2m+1,m in N uu {0}, then int0^(pi/2)(sin nx)/(sin x) dx is equal ...

    Text Solution

    |

  7. The set of values of x, for which (tan 3x - tan 2x)/(1+tan 3x tan 2x)=...

    Text Solution

    |

  8. For 0 lt theta lt pi/2, the solutions of sigma(m-1)^(6)"cosec"(theta+(...

    Text Solution

    |

  9. The root(s) of the expression 2sin^2 theta + sin^2 2theta=2 is

    Text Solution

    |

  10. Minimum value of sec ^(2) theta + cos ^(2) theta is

    Text Solution

    |

  11. If 1+sin x + sin^(2)x +….oo = 4 + 2sqrt(3), 0 lt x lt pi, x ne pi//2 t...

    Text Solution

    |

  12. Consider two points A = (-3, 0) and B = (0,4). If a point P on the li...

    Text Solution

    |

  13. If the family of lines lambdax + 3y - 6 = 0 (lambda is variable) inter...

    Text Solution

    |

  14. A line makes intercepts a and b with the coordinate axes. If the co...

    Text Solution

    |

  15. Distance of origin from the line (1+sqrt3)y+(1-sqrt3)x=10 along the li...

    Text Solution

    |

  16. A line passes through (1,0). The slope of the line, for which its inte...

    Text Solution

    |

  17. Consider the line passing through (sqrt 3,1) and (1,sqrt3) Then num...

    Text Solution

    |

  18. Let L(1)=0and L(2) =0 be two intarecting straight lines. Then the numb...

    Text Solution

    |

  19. If x + y = a and x + 2y = 2a are the adjacent sides of a rhombus whose...

    Text Solution

    |

  20. If the lines 2x + 3y = 8, 5x-6y + 7 = 0 and px + py = 1 are concurrent...

    Text Solution

    |