Home
Class 12
MATHS
If tan theta.tan phi = sqrt ((a -b)/(a +...

If `tan theta.tan phi = sqrt ((a -b)/(a +b)), ` then `(a -b cos 2 theta)(a -b cos 2 phi)` is

A

independent of `theta`

B

independent of `phi`

C

independent of `theta and phi`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ \tan \theta \tan \phi = \sqrt{\frac{a - b}{a + b}} \] ### Step 1: Square both sides We square both sides of the equation to eliminate the square root: \[ (\tan \theta \tan \phi)^2 = \frac{a - b}{a + b} \] Let \( t_1 = \tan \theta \) and \( t_2 = \tan \phi \). Thus, we can rewrite the equation as: \[ t_1^2 t_2^2 = \frac{a - b}{a + b} \] ### Step 2: Use the double angle formula for cosine We know that: \[ \cos 2\theta = \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta} = \frac{1 - t_1^2}{1 + t_1^2} \] And similarly for \(\phi\): \[ \cos 2\phi = \frac{1 - t_2^2}{1 + t_2^2} \] ### Step 3: Substitute into the expression We need to find the expression \( (a - b \cos 2\theta)(a - b \cos 2\phi) \). Substituting the values of \(\cos 2\theta\) and \(\cos 2\phi\): \[ a - b \cos 2\theta = a - b \left( \frac{1 - t_1^2}{1 + t_1^2} \right) = a - b \frac{1 - t_1^2}{1 + t_1^2} \] This simplifies to: \[ = \frac{(a(1 + t_1^2) - b(1 - t_1^2))}{1 + t_1^2} = \frac{(a + at_1^2 - b + bt_1^2)}{1 + t_1^2} = \frac{(a - b) + (a + b)t_1^2}{1 + t_1^2} \] Similarly, for \(\phi\): \[ a - b \cos 2\phi = \frac{(a - b) + (a + b)t_2^2}{1 + t_2^2} \] ### Step 4: Multiply the two expressions Now we multiply the two results: \[ (a - b \cos 2\theta)(a - b \cos 2\phi) = \left( \frac{(a - b) + (a + b)t_1^2}{1 + t_1^2} \right) \left( \frac{(a - b) + (a + b)t_2^2}{1 + t_2^2} \right) \] ### Step 5: Simplify the product The product can be simplified as follows: \[ = \frac{((a - b) + (a + b)t_1^2)((a - b) + (a + b)t_2^2)}{(1 + t_1^2)(1 + t_2^2)} \] ### Step 6: Substitute \(t_1^2 t_2^2\) From our earlier step, we know: \[ t_1^2 t_2^2 = \frac{a - b}{a + b} \] Thus, we can substitute this into our expression. The numerator becomes: \[ (a - b)^2 + (a + b)(t_1^2 + t_2^2)(a - b) + (a + b)^2 t_1^2 t_2^2 \] ### Step 7: Final expression After simplification, we find that: \[ (a - b \cos 2\theta)(a - b \cos 2\phi) = \frac{(a - b)(a + b)}{(1 + t_1^2)(1 + t_2^2)} \] ### Conclusion Thus, the final result is: \[ (a - b \cos 2\theta)(a - b \cos 2\phi) = \frac{(a - b)(a + b)}{(1 + t_1^2)(1 + t_2^2)} \]
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICS

    FIITJEE|Exercise OBJECTIVE|84 Videos
  • MATHEMATICS

    FIITJEE|Exercise ASSERTION REASONING|8 Videos
  • MATHEMATICS

    FIITJEE|Exercise NUMERICAL DECIMAL BASED QUESTIONS|15 Videos
  • MATHEMATICAL REASONING

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-2|18 Videos
  • MATHEMATICS TIPS

    FIITJEE|Exercise NUMERICAL DECIMAL BASED QUESTIONS|21 Videos

Similar Questions

Explore conceptually related problems

tan theta.tan phi=sqrt((a-b)/(a+b)), then (a-b cos2 theta)(a-b cos2 phi)=

If tan theta tan phi=sqrt((a-b)/(a+b)) , prove that a-bcos 2theta)(a-b cos 2phi) is independent of theta and phi .

If tan theta* tan phi = sqrt((x-y)/(x+y)) prove that (x - y cos 2theta)(x - y cos 2phi) = x^(2) – y^(2)

If tan(theta)/(2)=sqrt((a-b)/(a+b))tan(phi)/(2), prove that cos theta=(a cos phi+b)/(a+b cos phi)

If a tan theta = b, then a cos 2 theta+ b sin 2 theta =

If tan theta = 1 and sin phi = (1)/( sqrt(2)) , then the value of cos (theta + phi) is

If sqrt(a + b) tan = theta/2 = sqrt(a -b) tan phi/2 then prove that a + b cos phi = (a cos phi+ b) sec theta .

FIITJEE-MATHEMATICS -ASSIGNMENT (SECTION(I) MCQ(SINGLE CORRECT)
  1. If tan alpha = (1)/(sqrt (x (x ^(2) + x + 1))). tan beta = (sqrtx)/(sq...

    Text Solution

    |

  2. If int (0) ^(y) cos t ^(2) dt= int (0) ^(x ^(2)) (sint)/(t ) dt then ...

    Text Solution

    |

  3. If tan theta.tan phi = sqrt ((a -b)/(a +b)), then (a -b cos 2 theta)(...

    Text Solution

    |

  4. If n=2m+1,m in N uu {0}, then int0^(pi/2)(sin nx)/(sin x) dx is equal ...

    Text Solution

    |

  5. The set of values of x, for which (tan 3x - tan 2x)/(1+tan 3x tan 2x)=...

    Text Solution

    |

  6. For 0 lt theta lt pi/2, the solutions of sigma(m-1)^(6)"cosec"(theta+(...

    Text Solution

    |

  7. The root(s) of the expression 2sin^2 theta + sin^2 2theta=2 is

    Text Solution

    |

  8. Minimum value of sec ^(2) theta + cos ^(2) theta is

    Text Solution

    |

  9. If 1+sin x + sin^(2)x +….oo = 4 + 2sqrt(3), 0 lt x lt pi, x ne pi//2 t...

    Text Solution

    |

  10. Consider two points A = (-3, 0) and B = (0,4). If a point P on the li...

    Text Solution

    |

  11. If the family of lines lambdax + 3y - 6 = 0 (lambda is variable) inter...

    Text Solution

    |

  12. A line makes intercepts a and b with the coordinate axes. If the co...

    Text Solution

    |

  13. Distance of origin from the line (1+sqrt3)y+(1-sqrt3)x=10 along the li...

    Text Solution

    |

  14. A line passes through (1,0). The slope of the line, for which its inte...

    Text Solution

    |

  15. Consider the line passing through (sqrt 3,1) and (1,sqrt3) Then num...

    Text Solution

    |

  16. Let L(1)=0and L(2) =0 be two intarecting straight lines. Then the numb...

    Text Solution

    |

  17. If x + y = a and x + 2y = 2a are the adjacent sides of a rhombus whose...

    Text Solution

    |

  18. If the lines 2x + 3y = 8, 5x-6y + 7 = 0 and px + py = 1 are concurrent...

    Text Solution

    |

  19. The lines joining the points of intersection of the curve 5x^2 + 12xy ...

    Text Solution

    |

  20. Let A, B, C be three points in a straight line. B lying between A and ...

    Text Solution

    |