Home
Class 12
MATHS
The eccentricity of the ellipse ax ^(2) ...

The eccentricity of the ellipse `ax ^(2) + by ^(2) + 2 fx + 2gy + c =0` if axis of ellipse parallel to x -

A

`sqrt (((b -a)/(b )))`

B

`sqrt (((a +b)/(b )))`

C

`sqrt (((a +b)/(a)))`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the eccentricity of the ellipse given by the equation \( ax^2 + by^2 + 2fx + 2gy + c = 0 \) when the axes of the ellipse are parallel to the x-axis, we can follow these steps: ### Step 1: Identify the standard form of the ellipse The standard form of a horizontal ellipse is given by: \[ \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \] where \( a \) and \( b \) are the semi-major and semi-minor axes respectively. ### Step 2: Rewrite the given equation We start with the equation: \[ ax^2 + by^2 + 2fx + 2gy + c = 0 \] To convert this into the standard form, we need to complete the square for the \( x \) and \( y \) terms. ### Step 3: Complete the square for \( x \) For the \( x \) terms: \[ ax^2 + 2fx = a\left(x^2 + \frac{2f}{a}x\right) \] Now, we complete the square: \[ x^2 + \frac{2f}{a}x = \left(x + \frac{f}{a}\right)^2 - \frac{f^2}{a^2} \] Thus, \[ ax^2 + 2fx = a\left(\left(x + \frac{f}{a}\right)^2 - \frac{f^2}{a^2}\right) = a\left(x + \frac{f}{a}\right)^2 - \frac{f^2}{a} \] ### Step 4: Complete the square for \( y \) For the \( y \) terms: \[ by^2 + 2gy = b\left(y^2 + \frac{2g}{b}y\right) \] Completing the square gives: \[ y^2 + \frac{2g}{b}y = \left(y + \frac{g}{b}\right)^2 - \frac{g^2}{b^2} \] Thus, \[ by^2 + 2gy = b\left(\left(y + \frac{g}{b}\right)^2 - \frac{g^2}{b^2}\right) = b\left(y + \frac{g}{b}\right)^2 - \frac{g^2}{b} \] ### Step 5: Substitute back into the equation Substituting back into the original equation gives: \[ a\left(x + \frac{f}{a}\right)^2 - \frac{f^2}{a} + b\left(y + \frac{g}{b}\right)^2 - \frac{g^2}{b} + c = 0 \] Rearranging this, we have: \[ a\left(x + \frac{f}{a}\right)^2 + b\left(y + \frac{g}{b}\right)^2 = \frac{f^2}{a} + \frac{g^2}{b} - c \] ### Step 6: Divide by the constant on the right Let \( k = \frac{f^2}{a} + \frac{g^2}{b} - c \). Then we can write: \[ \frac{a\left(x + \frac{f}{a}\right)^2}{k} + \frac{b\left(y + \frac{g}{b}\right)^2}{k} = 1 \] This implies: \[ \frac{\left(x + \frac{f}{a}\right)^2}{\frac{k}{a}} + \frac{\left(y + \frac{g}{b}\right)^2}{\frac{k}{b}} = 1 \] ### Step 7: Identify \( a^2 \) and \( b^2 \) From the above, we can identify: \[ a^2 = \frac{k}{a}, \quad b^2 = \frac{k}{b} \] ### Step 8: Calculate the eccentricity The eccentricity \( e \) of the ellipse is given by: \[ e = \sqrt{1 - \frac{b^2}{a^2}} \] Substituting the values of \( a^2 \) and \( b^2 \): \[ e = \sqrt{1 - \frac{\frac{k}{b}}{\frac{k}{a}}} = \sqrt{1 - \frac{a}{b}} \] ### Final Answer Thus, the eccentricity of the ellipse is: \[ e = \sqrt{1 - \frac{a}{b}} \]
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICS

    FIITJEE|Exercise ASSERTION REASONING|8 Videos
  • MATHEMATICS

    FIITJEE|Exercise MCQ (MULTIPLE CORRECT)|30 Videos
  • MATHEMATICS

    FIITJEE|Exercise ASSIGNMENT (SECTION(I) MCQ(SINGLE CORRECT)|130 Videos
  • MATHEMATICAL REASONING

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-2|18 Videos
  • MATHEMATICS TIPS

    FIITJEE|Exercise NUMERICAL DECIMAL BASED QUESTIONS|21 Videos

Similar Questions

Explore conceptually related problems

The eccentricity of the ellipse x^(2) + 2y^(2) =6 is

The eccentricity of the ellipse x^(2)+4y^(2)+8y-2x+1=0 , is

Eccentricity of the ellipse 4x^(2)+y^(2)-8x-2y+1=0

The eccentricity of ellipse ax^2 + by^2 + 2gx + 2fy + c = 0 if its axis is parallel to x-axis is (A) sqrt((a+b)/(4) (B) sqrt((a-b)/(2) (C) sqrt((b-a)/(a) (D) sqrt((b-a)/(b)

Eccentricity of the ellipse 4x^(2)+y^(2)-8x+2y+1=0 is

Write the eccentricity of the ellipse 9x^(2)+5y^(2)-18x-2y-16=0

FIITJEE-MATHEMATICS -OBJECTIVE
  1. The abscissae and ordinates of the points A and B are the roots of the...

    Text Solution

    |

  2. The curve described parametrically by x=t^2+t+1 , and y=t^2-t+1 repres...

    Text Solution

    |

  3. The eccentricity of the ellipse ax ^(2) + by ^(2) + 2 fx + 2gy + c =0 ...

    Text Solution

    |

  4. A hyperbola, having the transverse axis of length 2 sin theta, is conf...

    Text Solution

    |

  5. If x ^(2) + y^(2) - 14 x - 6y - 6=0, then the maximum possible value o...

    Text Solution

    |

  6. Tangents are drawn from (4,4) to the circle x ^(2) + y ^(2) - 2x -7 =0...

    Text Solution

    |

  7. The value of sin^3 10^0+sin^3 50^0-sin^3 70^0 is equal to -3/2 (b) 3/...

    Text Solution

    |

  8. Two mutually perpendicular chords OA and OB are drawn through the vert...

    Text Solution

    |

  9. The equatin 2x = (2n +1)pi (1 - cos x) , (where n is a positive intege...

    Text Solution

    |

  10. If the sides of a triangle are in the ratio 1 : sqrt3 : 2, then the an...

    Text Solution

    |

  11. Consider the circle C(1):x ^(2) +y ^(2) -6x - 8y + 15=0, C(2) : x ^(2)...

    Text Solution

    |

  12. In a triangle ABC, IF angle B is twice angle C then c (b +a) is equal ...

    Text Solution

    |

  13. Orthocentre of the triangle formed by the lines whose combined equatio...

    Text Solution

    |

  14. Find the area of quadrilateral formed by 3x ^(2) + y ^(2) - 4xy + 6x -...

    Text Solution

    |

  15. Equation of a straight line passing through the point of intersection ...

    Text Solution

    |

  16. The equation of the image ofthe circle x^2+ y^2 +16x -24y+ 183 =0 by ...

    Text Solution

    |

  17. Equation of common tangent of parabola y ^(2) = 8x and x ^(2) + y =0 i...

    Text Solution

    |

  18. The equation of the ellipse is (x-1) ^(2) + (y -1) ^(2) = 1/9 ((3x + 4...

    Text Solution

    |

  19. One tangent out of the two langents drawn from the centre of the hyper...

    Text Solution

    |

  20. The equations of the sided of a triangle are x+y-5=0,x-y+1=0, and x+y-...

    Text Solution

    |