Home
Class 12
MATHS
In a triangle ABC, A - B =120 ^(@) and R...

In a triangle ABC, `A - B =120 ^(@) and R = 8r,` then the value of cos C is

A

`1/4`

B

`(sqrt15)/(4)`

C

`{:(7)/(8):}`

D

`(sqrt3)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \cos C \) given that \( A - B = 120^\circ \) and \( R = 8r \). ### Step-by-Step Solution: 1. **Use the given information:** We know that \( A - B = 120^\circ \). 2. **Use the relationship between angles:** From the triangle angle sum property, we have: \[ A + B + C = 180^\circ \] Therefore, we can express \( A + B \) as: \[ A + B = 180^\circ - C \] 3. **Express \( A \) and \( B \):** Let \( A = B + 120^\circ \). Substituting this into the equation for \( A + B \): \[ (B + 120^\circ) + B = 180^\circ - C \] Simplifying this, we get: \[ 2B + 120^\circ = 180^\circ - C \] Rearranging gives: \[ 2B = 60^\circ - C \quad \Rightarrow \quad B = \frac{60^\circ - C}{2} \] 4. **Substitute \( B \) back to find \( A \):** Now substituting \( B \) back to find \( A \): \[ A = B + 120^\circ = \frac{60^\circ - C}{2} + 120^\circ \] Simplifying this: \[ A = \frac{60^\circ - C + 240^\circ}{2} = \frac{300^\circ - C}{2} \] 5. **Use the sine rule:** We know that \( R = \frac{a}{2\sin A} = \frac{b}{2\sin B} = \frac{c}{2\sin C} \). Given \( R = 8r \), we can express \( r \) in terms of \( R \): \[ r = \frac{R}{8} \] 6. **Relate \( R \) and \( r \) using the sine rule:** From the sine rule, we can derive: \[ R = \frac{a}{2\sin A} \quad \text{and} \quad r = \frac{A}{s} \] where \( s \) is the semi-perimeter. However, we will not need to compute \( r \) directly for this problem. 7. **Use the cosine rule:** We can use the cosine rule to find \( \cos C \): \[ \cos C = \frac{a^2 + b^2 - c^2}{2ab} \] But we will find \( \sin C \) first. 8. **Use the half-angle identity:** We can express \( \sin C \) in terms of \( \sin \frac{C}{2} \): \[ \sin C = 2 \sin \frac{C}{2} \cos \frac{C}{2} \] 9. **Substituting values:** From the previous steps, we know: \[ \sin \frac{C}{2} = \frac{1}{4} \] Therefore: \[ \sin^2 \frac{C}{2} = \left(\frac{1}{4}\right)^2 = \frac{1}{16} \] 10. **Finding \( \cos C \):** Using the identity: \[ \cos C = 1 - 2\sin^2 \frac{C}{2} \] Substituting \( \sin^2 \frac{C}{2} \): \[ \cos C = 1 - 2 \cdot \frac{1}{16} = 1 - \frac{1}{8} = \frac{7}{8} \] ### Final Answer: \[ \cos C = \frac{7}{8} \]
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICS

    FIITJEE|Exercise ASSERTION REASONING|8 Videos
  • MATHEMATICS

    FIITJEE|Exercise MCQ (MULTIPLE CORRECT)|30 Videos
  • MATHEMATICS

    FIITJEE|Exercise ASSIGNMENT (SECTION(I) MCQ(SINGLE CORRECT)|130 Videos
  • MATHEMATICAL REASONING

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-2|18 Videos
  • MATHEMATICS TIPS

    FIITJEE|Exercise NUMERICAL DECIMAL BASED QUESTIONS|21 Videos

Similar Questions

Explore conceptually related problems

In a triangle ABC, If A=B=120^(@) and R=8r, then the value of cosC is

In DeltaABC," if " A-B=120^(@) and R=8r , then the value of (1+cosC)/(1-cosC) equals : (All symbols used hav their usual meaning in a triangle)

In triangle ABC, if A - B = 120^(2) and R = 8r , where R and r have their usual meaning, then cos C equals

In triangle ABC, if A-B=120^(@) and R=8r, where R and r have their usual meanings,then cos C equal (a) (3)/(4) (b) (2)/(3)(c)(5)/(6) (d) (7)/(8)

Let a,b,c be the sides of a triangle ABC, a=2c,cos(A-C)+cos B=1. then the value of C is

In a triangle ABC,cos A+cos B+cos C

In a triangle ABC, cos A+cos B+cos C=

If in a triangle ABC , sin A =cos B , then the value of cos C is

In /_ABC, if cos A+cos B+cos C=(7)/(5) and 2R=mu r, then the value of mu is

In a Delta ABC,a=5,b=3 and c=7, then the value of 3cos C+7cos B is equal to

FIITJEE-MATHEMATICS -OBJECTIVE
  1. If xy = m^(2) -4 be a reactangular hyperbola whose branches lies only...

    Text Solution

    |

  2. Number of points on hyperbola (x ^(2))/(a ^(2)) - (y ^(2))/(b ^(2)) =1...

    Text Solution

    |

  3. In a triangle ABC, A - B =120 ^(@) and R = 8r, then the value of cos C...

    Text Solution

    |

  4. x ^(2) (lamda ^(2) - 4 lamda + 3) +y ^(2) (lamda ^(2) - 6 lamda +5) =1...

    Text Solution

    |

  5. For all real values of a and b lines (2a + b) x + (a + 3b) y + (b - 3a...

    Text Solution

    |

  6. A line of slope lambda(0<lambda<1) touches the parabola y+3x^2=0 at Pd...

    Text Solution

    |

  7. Normals at two points (x1y1)a n d(x2, y2) of the parabola y^2=4x meet ...

    Text Solution

    |

  8. If A (3,1) and B (-5,7) are any two given points, If P is a point one ...

    Text Solution

    |

  9. Let f (x) = sin x - ax and g (x) - sin x - bx, where 0 lt a,b, lt 1 Su...

    Text Solution

    |

  10. If sin ^(-1)((1 - x ^(2))/(1 + x ^(2)))+ cos ^(-1) ((2x )/(1 +x ^(2)))...

    Text Solution

    |

  11. From a point P outside a circle with centre at C, tangents PA and PB a...

    Text Solution

    |

  12. the equation of the radical axis of the two circles 7x^2+7y^2-7x+14y+...

    Text Solution

    |

  13. Point on the curve y ^(2) = 4 (x -10) which is nearest to the line x ...

    Text Solution

    |

  14. If (t,0) is point on diameter of circle x ^(2) + y ^(2) =4, then the e...

    Text Solution

    |

  15. The locus of mid-point of family of chords lamda x + y - 5 =0 (paramet...

    Text Solution

    |

  16. If the tangents at two points (1,2) and (3,6) on a parabola intersect ...

    Text Solution

    |

  17. In triangle ABC, angle C = 120^(@). If h be the harmonic mean of the l...

    Text Solution

    |

  18. sin ((1)/(5) cos ^(-1) x)=1 has

    Text Solution

    |

  19. The circle C has radius 1 and touches the line L and P. The point X li...

    Text Solution

    |

  20. Let E be the ellipse (x^2)/9+(y^2)/4=1 and C be the circle x^2+y^2=9 ....

    Text Solution

    |