Home
Class 12
MATHS
If sin ^(-1)((1 - x ^(2))/(1 + x ^(2)))+...

If `sin ^(-1)((1 - x ^(2))/(1 + x ^(2)))+ cos ^(-1) ((2x )/(1 +x ^(2)))= pi/3,` then the vlaue of x is equal to

A

`1 //sqrt2`

B

`1 //sqrt3`

C

`sqrt2`

D

`sqrt3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \sin^{-1}\left(\frac{1 - x^2}{1 + x^2}\right) + \cos^{-1}\left(\frac{2x}{1 + x^2}\right) = \frac{\pi}{3}, \] we will follow these steps: ### Step 1: Use the identity for \(\cos^{-1}(y)\) We know that \[ \cos^{-1}(y) = \frac{\pi}{2} - \sin^{-1}(y). \] Using this identity, we can rewrite the equation: \[ \sin^{-1}\left(\frac{1 - x^2}{1 + x^2}\right) + \left(\frac{\pi}{2} - \sin^{-1}\left(\frac{2x}{1 + x^2}\right)\right) = \frac{\pi}{3}. \] ### Step 2: Simplify the equation Rearranging the equation gives us: \[ \sin^{-1}\left(\frac{1 - x^2}{1 + x^2}\right) - \sin^{-1}\left(\frac{2x}{1 + x^2}\right) = \frac{\pi}{3} - \frac{\pi}{2}. \] This simplifies to: \[ \sin^{-1}\left(\frac{1 - x^2}{1 + x^2}\right) - \sin^{-1}\left(\frac{2x}{1 + x^2}\right) = -\frac{\pi}{6}. \] ### Step 3: Use the sine difference identity Using the identity \(\sin^{-1}(a) - \sin^{-1}(b) = \sin^{-1\left(a\sqrt{1-b^2} - b\sqrt{1-a^2}\right)}\), we can rewrite the left-hand side: Let \(a = \frac{1 - x^2}{1 + x^2}\) and \(b = \frac{2x}{1 + x^2}\). Thus, we have: \[ \sin^{-1}\left(\frac{1 - x^2}{1 + x^2}\sqrt{1 - \left(\frac{2x}{1 + x^2}\right)^2} - \frac{2x}{1 + x^2}\sqrt{1 - \left(\frac{1 - x^2}{1 + x^2}\right)^2}\right) = -\frac{\pi}{6}. \] ### Step 4: Solve for \(x\) To solve for \(x\), we can set: \[ \frac{1 - x^2}{1 + x^2}\sqrt{1 - \left(\frac{2x}{1 + x^2}\right)^2} - \frac{2x}{1 + x^2}\sqrt{1 - \left(\frac{1 - x^2}{1 + x^2}\right)^2} = -\frac{1}{2}. \] This equation can be quite complex, but we can also approach the problem by substituting values for \(x\) or using trigonometric identities. ### Step 5: Substituting \(x = \tan(y)\) Let \(x = \tan(y)\). Then, we can express the equation in terms of \(y\): \[ \sin^{-1}\left(\frac{1 - \tan^2(y)}{1 + \tan^2(y)}\right) + \cos^{-1}\left(\frac{2\tan(y)}{1 + \tan^2(y)}\right) = \frac{\pi}{3}. \] Using the double angle formulas, we can find that: \[ \sin^{-1}(\cos(2y)) + \cos^{-1}(\sin(2y)) = \frac{\pi}{3}. \] ### Step 6: Final Calculation From the above, we find that: \[ y = \frac{\pi}{6} \implies x = \tan\left(\frac{\pi}{6}\right) = \frac{1}{\sqrt{3}}. \] Thus, the value of \(x\) is: \[ \boxed{\frac{1}{\sqrt{3}}}. \]
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICS

    FIITJEE|Exercise ASSERTION REASONING|8 Videos
  • MATHEMATICS

    FIITJEE|Exercise MCQ (MULTIPLE CORRECT)|30 Videos
  • MATHEMATICS

    FIITJEE|Exercise ASSIGNMENT (SECTION(I) MCQ(SINGLE CORRECT)|130 Videos
  • MATHEMATICAL REASONING

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-2|18 Videos
  • MATHEMATICS TIPS

    FIITJEE|Exercise NUMERICAL DECIMAL BASED QUESTIONS|21 Videos

Similar Questions

Explore conceptually related problems

If sin^(-1)((5)/(x))+sin^(-1)((12)/(x))=sin^(-1)((2)/(x))+cos^(-1)((2)/(x)) then the value of x is equal to

Solve for x, cos^(-1)((x^(2)-1)/(x^(2)+1))+tan^(-1)((-2x)/(1-x^(2)))=(2pi)/(3)

If 0lexle1 then sin{tan^(-1)((1-x^(2))/(2x))+cos^(-1)((1-x^(2))/(1+x^(2)))} is equal to

If -1lexle0 then sin{tan^(-1)((1-x^(2))/(2x))-cos^(-1)((1-x^(2))/(1+x^(2)))} is equal to

5cos^(-1)((1-x^(2))/(1+x^(2)))+7sin^(-1)((2x)/(1+x^(2)))-4tan^(-1)((2x)/(1-x^(2)))-tan^(-1)x=5pi , then x is equal to

The number of solution of sin^(-1)((2x)/(1+x^(2)))+cos^(-1)((1-x^(2))/(1+x^(2)))=pi in ((1)/(2),(3)/(2)) is not equal to

FIITJEE-MATHEMATICS -OBJECTIVE
  1. If A (3,1) and B (-5,7) are any two given points, If P is a point one ...

    Text Solution

    |

  2. Let f (x) = sin x - ax and g (x) - sin x - bx, where 0 lt a,b, lt 1 Su...

    Text Solution

    |

  3. If sin ^(-1)((1 - x ^(2))/(1 + x ^(2)))+ cos ^(-1) ((2x )/(1 +x ^(2)))...

    Text Solution

    |

  4. From a point P outside a circle with centre at C, tangents PA and PB a...

    Text Solution

    |

  5. the equation of the radical axis of the two circles 7x^2+7y^2-7x+14y+...

    Text Solution

    |

  6. Point on the curve y ^(2) = 4 (x -10) which is nearest to the line x ...

    Text Solution

    |

  7. If (t,0) is point on diameter of circle x ^(2) + y ^(2) =4, then the e...

    Text Solution

    |

  8. The locus of mid-point of family of chords lamda x + y - 5 =0 (paramet...

    Text Solution

    |

  9. If the tangents at two points (1,2) and (3,6) on a parabola intersect ...

    Text Solution

    |

  10. In triangle ABC, angle C = 120^(@). If h be the harmonic mean of the l...

    Text Solution

    |

  11. sin ((1)/(5) cos ^(-1) x)=1 has

    Text Solution

    |

  12. The circle C has radius 1 and touches the line L and P. The point X li...

    Text Solution

    |

  13. Let E be the ellipse (x^2)/9+(y^2)/4=1 and C be the circle x^2+y^2=9 ....

    Text Solution

    |

  14. An ellipse has the points (1, -1) and (2,-1) as its foci and x + y = 5...

    Text Solution

    |

  15. Let K = 1 ^(@), then 2 sin 2K + 6 sin 6K + ….+ 180 sin 180 k is equal...

    Text Solution

    |

  16. The maximum area of a traingle whose sides a,b,c satify 0 le a le 1,1 ...

    Text Solution

    |

  17. The minimum distance between the circle x^2 +y^2=9 and the curve 2x^2...

    Text Solution

    |

  18. The medians AA' and BB' of triangle ABC intersect at right angle, If B...

    Text Solution

    |

  19. If y = lamda x -3, y = mu x + , y = x +4 are three nomals drawn from a...

    Text Solution

    |

  20. Let P(a sec theta , b tan theta ) and Q(a sec phi , b tan phi) where ...

    Text Solution

    |