Home
Class 12
MATHS
If sin x + cosec x + tan y + cot y =4 wh...

If `sin x + cosec x + tan y + cot y =4` where x and `y in [ 0 (pi)/(2)],` then `tan "" (y)/(2) ` is a root of the equation

A

`alpha ^(2) + 2 alpha + 1=0`

B

`alpha ^(2) + 2 alpha -1 =0`

C

`2 alpha ^(2) - 2 alpha -1 =0`

D

`alpha ^(2) - alpha -1 =0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin x + \csc x + \tan y + \cot y = 4 \) where \( x, y \in \left[0, \frac{\pi}{2}\right] \), we will analyze the components of the equation step by step. ### Step 1: Analyze the components We know that: - \( \sin x + \csc x \geq 2 \) (by AM-GM inequality) - \( \tan y + \cot y \geq 2 \) (by AM-GM inequality) ### Step 2: Apply the inequalities Using the inequalities from Step 1, we can combine them: \[ \sin x + \csc x + \tan y + \cot y \geq 2 + 2 = 4 \] This indicates that the equality \( \sin x + \csc x + \tan y + \cot y = 4 \) holds when both pairs achieve their minimum values. ### Step 3: Determine when equality holds The equality in AM-GM holds when: - \( \sin x = \csc x \) implies \( \sin x = 1 \) (thus \( x = \frac{\pi}{2} \)) - \( \tan y = \cot y \) implies \( \tan y = 1 \) (thus \( y = \frac{\pi}{4} \)) ### Step 4: Substitute values Substituting \( x = \frac{\pi}{2} \) and \( y = \frac{\pi}{4} \) into the original equation: \[ \sin\left(\frac{\pi}{2}\right) + \csc\left(\frac{\pi}{2}\right) + \tan\left(\frac{\pi}{4}\right) + \cot\left(\frac{\pi}{4}\right) = 1 + 1 + 1 + 1 = 4 \] This confirms that the equality holds. ### Step 5: Find \( \tan\left(\frac{y}{2}\right) \) Now, we need to find \( \tan\left(\frac{y}{2}\right) \) where \( y = \frac{\pi}{4} \): \[ \tan\left(\frac{y}{2}\right) = \tan\left(\frac{\pi/4}{2}\right) = \tan\left(\frac{\pi}{8}\right) \] ### Step 6: Set up the equation Using the double angle identity for tangent: \[ \tan y = \frac{2\tan\left(\frac{y}{2}\right)}{1 - \tan^2\left(\frac{y}{2}\right)} \] Substituting \( \tan y = 1 \): \[ 1 = \frac{2\tan\left(\frac{y}{2}\right)}{1 - \tan^2\left(\frac{y}{2}\right)} \] Cross-multiplying gives: \[ 1 - \tan^2\left(\frac{y}{2}\right) = 2\tan\left(\frac{y}{2}\right) \] Rearranging leads to: \[ \tan^2\left(\frac{y}{2}\right) + 2\tan\left(\frac{y}{2}\right) - 1 = 0 \] ### Step 7: Solve the quadratic equation Let \( z = \tan\left(\frac{y}{2}\right) \): \[ z^2 + 2z - 1 = 0 \] Using the quadratic formula: \[ z = \frac{-2 \pm \sqrt{(2)^2 - 4 \cdot 1 \cdot (-1)}}{2 \cdot 1} = \frac{-2 \pm \sqrt{4 + 4}}{2} = \frac{-2 \pm \sqrt{8}}{2} = \frac{-2 \pm 2\sqrt{2}}{2} = -1 \pm \sqrt{2} \] Since \( z = \tan\left(\frac{y}{2}\right) \) must be non-negative, we take: \[ \tan\left(\frac{y}{2}\right) = -1 + \sqrt{2} \] ### Final Answer Thus, \( \tan\left(\frac{y}{2}\right) \) is a root of the equation: \[ z^2 + 2z - 1 = 0 \]
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICS

    FIITJEE|Exercise ASSERTION REASONING|8 Videos
  • MATHEMATICS

    FIITJEE|Exercise MCQ (MULTIPLE CORRECT)|30 Videos
  • MATHEMATICS

    FIITJEE|Exercise ASSIGNMENT (SECTION(I) MCQ(SINGLE CORRECT)|130 Videos
  • MATHEMATICAL REASONING

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-2|18 Videos
  • MATHEMATICS TIPS

    FIITJEE|Exercise NUMERICAL DECIMAL BASED QUESTIONS|21 Videos

Similar Questions

Explore conceptually related problems

sec^(2) y tan x dy + sec^(2) x tan y dx = 0 , " when " x =y = pi/4

y = tan ^ (- 1) (cot x) + cot ^ (- 1) (tan x), (pi) / (2)

If cos x=tan y,cot y=tan z and cot z=tan x, then sin x=

If (sin x)/(sin y)=(1)/(2),(cos x)/(cos y)=(3)/(2), where x,y in(0,(pi)/(2)), then the value of tan(x+y) is equal to

If tan x+tan y=25 and cot x+cot y=30

If sin x cos y=(1)/(4) and 3tan x=4tan y then sin(x-y)=

If sin x cos y=(1)/(4) and 3tan x=4tan y then sin(x-y)=

If the sum of all value of x satisfying the system of equations tan x + tan y+ tan x* tan y=5 sin (x +y)=4 cos x * cos y is (k pi )/2 , where x in (0, (pi)/(2)) then find the values of k .

FIITJEE-MATHEMATICS -OBJECTIVE
  1. A triangle is inscribed in a circle. The vertices of the triangle divi...

    Text Solution

    |

  2. The feet of the normals to (x^(2))/(a^(2)) -(y^(2))/(b^(2)) =1 from (h...

    Text Solution

    |

  3. If sin x + cosec x + tan y + cot y =4 where x and y in [ 0 (pi)/(2)], ...

    Text Solution

    |

  4. The number of integral values of k for which the equation 7 cos x + 5 ...

    Text Solution

    |

  5. The vlaues of k for which the circles x ^(2) + y ^(2) =1 and x ^(2) + ...

    Text Solution

    |

  6. Consider a triange ABC, where B and C are (-a,0) and (a,0) respectivel...

    Text Solution

    |

  7. If sinx,cosx,tanxare in G.P., then cot^6x-cot^2x= (A) 0 (B) -1 (C) 1 (...

    Text Solution

    |

  8. The triangle formed by the tangent to the parabola y=x^(2) at the poin...

    Text Solution

    |

  9. The number of all the possible triplets (a1,a2,a3) such that a1+a2cos(...

    Text Solution

    |

  10. The value of lamda for which the equation (10 x -5) ^(2) + (10y-15) ^...

    Text Solution

    |

  11. From any point P on the parabola y^(2)=4ax, perpebdicular PN is drawn ...

    Text Solution

    |

  12. If sin x (1)+ sin x(2) + sin x (3) +…+ sin x (n) is

    Text Solution

    |

  13. Two paralel straight lines indined at an angle theta to x-axis where (...

    Text Solution

    |

  14. Let the equation of circle is x ^(2) + y ^(2) - 6x + 4y + 12=0. Then ...

    Text Solution

    |

  15. If a and b be the segments of a focal chord and 4c be the latus rectum...

    Text Solution

    |

  16. sum (k =1) ^(89) log (e) tan ((pik)/(180)) is equal to

    Text Solution

    |

  17. The lengths of intercepts made by any circle on the coordinate axes ar...

    Text Solution

    |

  18. Portion of asymptote of hypebola (x^(2))/(a^(2)) - (y ^(2))/(b ^(2)) =...

    Text Solution

    |

  19. Equation of circle touching the lines |x-2| + | y-3|=4 will be

    Text Solution

    |

  20. If the focus of the parabola (y - k)^2 = 4(x - h) always lies between ...

    Text Solution

    |