Home
Class 12
MATHS
Given vec(a)=3hati+2hatj+4hatk,vec(b)=2(...

Given `vec(a)=3hati+2hatj+4hatk,vec(b)=2(hati+hatk)` and `vec( c )=4hati+2hatj+3hatk`. Find for what number of distinct values of `alpha` the equation `x vec(a)+y vec(b)+z vec( c )=alpha(x hati+y hatj+z hatk)` has non-trival solution (x, y, z).

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the equation given: \[ x \vec{a} + y \vec{b} + z \vec{c} = \alpha (x \hat{i} + y \hat{j} + z \hat{k}) \] where: - \(\vec{a} = 3 \hat{i} + 2 \hat{j} + 4 \hat{k}\) - \(\vec{b} = 2(\hat{i} + \hat{k}) = 2 \hat{i} + 0 \hat{j} + 2 \hat{k}\) - \(\vec{c} = 4 \hat{i} + 2 \hat{j} + 3 \hat{k}\) ### Step 1: Write the equation in component form We can express the left-hand side in terms of its components: \[ x \vec{a} + y \vec{b} + z \vec{c} = x(3 \hat{i} + 2 \hat{j} + 4 \hat{k}) + y(2 \hat{i} + 0 \hat{j} + 2 \hat{k}) + z(4 \hat{i} + 2 \hat{j} + 3 \hat{k}) \] Combining terms, we get: \[ = (3x + 2y + 4z) \hat{i} + (2x + 0y + 2z) \hat{j} + (4x + 2y + 3z) \hat{k} \] ### Step 2: Equate the components Now, we equate the components of the left-hand side with the right-hand side: 1. For \(\hat{i}\): \[ 3x + 2y + 4z = \alpha x \] 2. For \(\hat{j}\): \[ 2x + 0y + 2z = \alpha y \] 3. For \(\hat{k}\): \[ 4x + 2y + 3z = \alpha z \] ### Step 3: Rearranging the equations We can rearrange these equations: 1. \( (3 - \alpha)x + 2y + 4z = 0 \) (Equation 1) 2. \( 2x + 2z - \alpha y = 0 \) (Equation 2) 3. \( 4x + 2y + (3 - \alpha)z = 0 \) (Equation 3) ### Step 4: Form the coefficient matrix The system of equations can be represented in matrix form: \[ \begin{bmatrix} 3 - \alpha & 2 & 4 \\ 2 & -\alpha & 2 \\ 4 & 2 & 3 - \alpha \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \] ### Step 5: Find the determinant For the system to have non-trivial solutions, the determinant of the coefficient matrix must be zero. We calculate the determinant: \[ D = \begin{vmatrix} 3 - \alpha & 2 & 4 \\ 2 & -\alpha & 2 \\ 4 & 2 & 3 - \alpha \end{vmatrix} \] Calculating this determinant (using cofactor expansion or any method) will yield a polynomial in \(\alpha\). ### Step 6: Solve the determinant equation Set the determinant \(D = 0\) and solve for \(\alpha\). This will give us the values of \(\alpha\) for which the system has non-trivial solutions. ### Step 7: Count distinct values After solving, we will find the distinct values of \(\alpha\). ### Final Answer The distinct values of \(\alpha\) found are \(0\) and \(3\). Therefore, the number of distinct values of \(\alpha\) is \(2\).
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICS TIPS

    FIITJEE|Exercise NUMERICAL DECIMAL BASED QUESTIONS|21 Videos
  • MATHEMATICS TIPS

    FIITJEE|Exercise PARAGRAPH BASED (MULTIPLE CHOICE) (COMPERHENSION - XVI)|3 Videos
  • MATHEMATICS

    FIITJEE|Exercise NUMERICAL DECIMAL BASED QUESTIONS|15 Videos
  • MATRICES

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

If vec a=3hati-hatj+4hatk, vecb=2hati+3hatj-hatk and vec c=-5hati+2hatj+3hatk , then vec a.(vecb xx vec c) is

If veca =hati + hatj - hatk, vecb = 2hati + 3hatj + hatk and vec c = hati + alpha hatj are coplanar vector , then the value of alpha is :

If veca = hati - hatj + hatk, vecb= 2 hati + hatj -hatk and vec c = lamda hati -hatj+ lamda hatk are coplanar, find the value of lamda.

If vec(a) = hati - 2hatj - 3hatk, vec(b) = 2hati +hatj - hatk and vec(c) = hati +3hatj - 2hatk then find vec(a) xx (vec(b) xx vec(c)) .

If vec(a) = hati - 2hatj - 3hatk, vec(b) = 2 hati - hatj - hatk and vec(c) = hati +3 hatj - 2hatk find (vec(a) xx vec(b)) xx vec(c)

If vec(OA)=2hati-hatj+hatk, vec(OB)=hati-3hatj-5hatk and vec(OC)=3hati-3hatj-3hatk then show that CB is perpendicular to AC.

The vectors veca=hati-2hatj+3hatk, vecb=-2hati+3hatj-4hatk and vec c=hati-3hatj+lambdahatk are coplanar if the value of lambda is

If veca=x hati+y hatj+z hatk, vecb=y hati+z hatj+x hatk, and vec c=z hati+x hatj+y hatk , then veca xx (vecb xx vec c) is :

If veca = 3hati - hatj - 4hatk , vecb = -2hati + 4hatj - 3hatk and vec c = hati + 2hatj - hatk then |3veca - 2vec b + 4vec c | is equal to

FIITJEE-MATHEMATICS TIPS-NUMERICAL RASED QUESTIONS
  1. If a,b,c are three positive real numbers then the minimum value of the...

    Text Solution

    |

  2. Suppose that w is the imaginary (2009)^("th") roots of unity. If (2^...

    Text Solution

    |

  3. If alpha is the absolute maximum value of the expression (3x^(2)+2x-1)...

    Text Solution

    |

  4. Let (x, y, z) be points with integer coordinates satisfying the system...

    Text Solution

    |

  5. The number of integral values of a , a in (6,100) for which the equati...

    Text Solution

    |

  6. Given vec(a)=3hati+2hatj+4hatk,vec(b)=2(hati+hatk) and vec( c )=4hati+...

    Text Solution

    |

  7. OABC is a tetrahedron in which O is the origin and position vector ot ...

    Text Solution

    |

  8. The sum of the factors of 9! Which are odd and are of the form 3m+2, w...

    Text Solution

    |

  9. The number of solutions of theta in [0,2pi] satisfying the equation ...

    Text Solution

    |

  10. The equation of the plane passing through the intersection of the plan...

    Text Solution

    |

  11. Let x, y, z be three positive real numbers such that x+y+z=1 then the ...

    Text Solution

    |

  12. A quadratic equation with integral coefficients has two different prim...

    Text Solution

    |

  13. The number of lines represented by the equation x^(2)=y^(2)=z^(2), is

    Text Solution

    |

  14. The remainder when (2345)^(676)+(1234)^(567) is divided by 4 is

    Text Solution

    |

  15. If vec(A)=hati-3hatj+4hatk,vec(B)=6hati+4hatj-8hatk,vec( C )=5hati+2ha...

    Text Solution

    |

  16. Number of complex number z satisfying |z+2|+|z-2|=8 and |z-1|+|z+1|=2,...

    Text Solution

    |

  17. If z(1) satisfies |z-1|=1 and z(2) satisfies |z-4i|=1, then |z(1)-z(2)...

    Text Solution

    |

  18. The number of integral values of k for which the inequality x^(2)-2(...

    Text Solution

    |

  19. Let vec(a),vec(b),vec( c ) be three non-coplanar vectors. If (x+2y+z...

    Text Solution

    |

  20. If alpha is a root of x^(2)-x+1=0 and beta be the digit at unit place ...

    Text Solution

    |