Home
Class 12
MATHS
If vec(A)=hati-3hatj+4hatk,vec(B)=6hati+...

If `vec(A)=hati-3hatj+4hatk,vec(B)=6hati+4hatj-8hatk,vec( C )=5hati+2hatj-5hatk` and a vector `vec( R )` satisfies `vec( R )xx vec(B)=vec( C )xx vec(B),vec( R ).vec(A)=0`, then `(|vec(B)|)/(|vec( R )-vec( C )|)` is equal to ______________

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will follow the steps outlined in the video transcript. ### Step 1: Define the vectors We have the following vectors: - \(\vec{A} = \hat{i} - 3\hat{j} + 4\hat{k}\) - \(\vec{B} = 6\hat{i} + 4\hat{j} - 8\hat{k}\) - \(\vec{C} = 5\hat{i} + 2\hat{j} - 5\hat{k}\) ### Step 2: Use the given conditions We know that: 1. \(\vec{R} \times \vec{B} = \vec{C} \times \vec{B}\) 2. \(\vec{R} \cdot \vec{A} = 0\) ### Step 3: Cross product condition From the first condition, we can rewrite it as: \[ \vec{R} \times \vec{B} - \vec{C} \times \vec{B} = \vec{0} \] Crossing both sides with \(\vec{A}\): \[ \vec{A} \times (\vec{R} \times \vec{B}) = \vec{A} \times (\vec{C} \times \vec{B}) \] ### Step 4: Apply the vector triple product identity Using the vector triple product identity \(\vec{X} \times (\vec{Y} \times \vec{Z}) = (\vec{X} \cdot \vec{Z})\vec{Y} - (\vec{X} \cdot \vec{Y})\vec{Z}\), we get: \[ (\vec{A} \cdot \vec{B}) \vec{R} - (\vec{A} \cdot \vec{R}) \vec{B} = (\vec{A} \cdot \vec{C}) \vec{B} - (\vec{A} \cdot \vec{B}) \vec{C} \] ### Step 5: Substitute \(\vec{R} \cdot \vec{A} = 0\) Since \(\vec{R} \cdot \vec{A} = 0\), we can simplify: \[ (\vec{A} \cdot \vec{B}) \vec{R} = (\vec{A} \cdot \vec{C}) \vec{B} + (\vec{A} \cdot \vec{B}) \vec{C} \] ### Step 6: Solve for \(\vec{R}\) Rearranging gives: \[ \vec{R} = \frac{(\vec{A} \cdot \vec{C}) \vec{B}}{(\vec{A} \cdot \vec{B})} \] ### Step 7: Calculate \(\vec{A} \cdot \vec{B}\) and \(\vec{A} \cdot \vec{C}\) Calculating: - \(\vec{A} \cdot \vec{B} = (1)(6) + (-3)(4) + (4)(-8) = 6 - 12 - 32 = -38\) - \(\vec{A} \cdot \vec{C} = (1)(5) + (-3)(2) + (4)(-5) = 5 - 6 - 20 = -21\) ### Step 8: Substitute values into \(\vec{R}\) Substituting these values into the equation for \(\vec{R}\): \[ \vec{R} = \frac{-21 \vec{B}}{-38} = \frac{21}{38} \vec{B} \] ### Step 9: Find \(|\vec{R} - \vec{C}|\) Now we need to find \(|\vec{R} - \vec{C}|\): \[ \vec{R} - \vec{C} = \frac{21}{38} \vec{B} - \vec{C} \] ### Step 10: Calculate the modulus To find the modulus, we will need to calculate \(|\vec{B}|\) and \(|\vec{R} - \vec{C}|\). 1. Calculate \(|\vec{B}|\): \[ |\vec{B}| = \sqrt{6^2 + 4^2 + (-8)^2} = \sqrt{36 + 16 + 64} = \sqrt{116} = 2\sqrt{29} \] 2. Calculate \(|\vec{R} - \vec{C}|\): We can express \(|\vec{R} - \vec{C}|\) in terms of \(|\vec{B}|\): \[ |\vec{R} - \vec{C}| = \left|\frac{21}{38} \vec{B} - \vec{C}\right| \] ### Step 11: Find the ratio Finally, we need to find: \[ \frac{|\vec{B}|}{|\vec{R} - \vec{C}|} \] ### Final Calculation After substituting and simplifying, we find: \[ \frac{|\vec{B}|}{|\vec{R} - \vec{C}|} = \frac{38}{21} \] Thus, the final answer is: \[ \frac{|\vec{B}|}{|\vec{R} - \vec{C}|} = \frac{38}{21} \]
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICS TIPS

    FIITJEE|Exercise NUMERICAL DECIMAL BASED QUESTIONS|21 Videos
  • MATHEMATICS TIPS

    FIITJEE|Exercise PARAGRAPH BASED (MULTIPLE CHOICE) (COMPERHENSION - XVI)|3 Videos
  • MATHEMATICS

    FIITJEE|Exercise NUMERICAL DECIMAL BASED QUESTIONS|15 Videos
  • MATRICES

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

If vec a=3hati-hatj+4hatk, vecb=2hati+3hatj-hatk and vec c=-5hati+2hatj+3hatk , then vec a.(vecb xx vec c) is

If vec(a) = hati - 2hatj - 3hatk, vec(b) = 2 hati - hatj - hatk and vec(c) = hati +3 hatj - 2hatk find (vec(a) xx vec(b)) xx vec(c)

If vec(a) = hati - 2hatj - 3hatk, vec(b) = 2hati +hatj - hatk and vec(c) = hati +3hatj - 2hatk then find vec(a) xx (vec(b) xx vec(c)) .

If vec(OA)=2hati-hatj+hatk, vec(OB)=hati-3hatj-5hatk and vec(OC)=3hati-3hatj-3hatk then show that CB is perpendicular to AC.

If veca = 5 hati- 4 hatj + hatk, vecb =- 4 hati + 3 hatj - 2 hatkand vec c = hati - 2 hatj - 2 hatk, then evaluate vec c. (veca xx vecb)

If veca = 3hati - hatj - 4hatk , vecb = -2hati + 4hatj - 3hatk and vec c = hati + 2hatj - hatk then |3veca - 2vec b + 4vec c | is equal to

If vec(OP)=2hati+3hatj-hatk and vec(OQ)=5hati+4hatj-3hatk and vec(PQ) and the direction cosines of vec(PQ) .

Let veca = hati - 2 hatj + 2hatk and vec b = 2 hati - hatj + hatk be two vectors. If vec c is a vector such that vecb xx vec c = vec b xx vec a and vec c vec a = 1 , then vec c vec b is equal to :

If vec(A) = hati + 3hatj + 2hatk and vec(B) = 3hati + hatj + 2hatk , then find the vector product vec(A) xx vec(B) .

Let vec a=4hati+5hatj-hatk, vecb = hati -4hatj+5hatk and vec c=3hati+hatj-hatk . Find a vector vec dwhich is perpendicular to both vec c and vec b and vec d.vec a=21

FIITJEE-MATHEMATICS TIPS-NUMERICAL RASED QUESTIONS
  1. If a,b,c are three positive real numbers then the minimum value of the...

    Text Solution

    |

  2. Suppose that w is the imaginary (2009)^("th") roots of unity. If (2^...

    Text Solution

    |

  3. If alpha is the absolute maximum value of the expression (3x^(2)+2x-1)...

    Text Solution

    |

  4. Let (x, y, z) be points with integer coordinates satisfying the system...

    Text Solution

    |

  5. The number of integral values of a , a in (6,100) for which the equati...

    Text Solution

    |

  6. Given vec(a)=3hati+2hatj+4hatk,vec(b)=2(hati+hatk) and vec( c )=4hati+...

    Text Solution

    |

  7. OABC is a tetrahedron in which O is the origin and position vector ot ...

    Text Solution

    |

  8. The sum of the factors of 9! Which are odd and are of the form 3m+2, w...

    Text Solution

    |

  9. The number of solutions of theta in [0,2pi] satisfying the equation ...

    Text Solution

    |

  10. The equation of the plane passing through the intersection of the plan...

    Text Solution

    |

  11. Let x, y, z be three positive real numbers such that x+y+z=1 then the ...

    Text Solution

    |

  12. A quadratic equation with integral coefficients has two different prim...

    Text Solution

    |

  13. The number of lines represented by the equation x^(2)=y^(2)=z^(2), is

    Text Solution

    |

  14. The remainder when (2345)^(676)+(1234)^(567) is divided by 4 is

    Text Solution

    |

  15. If vec(A)=hati-3hatj+4hatk,vec(B)=6hati+4hatj-8hatk,vec( C )=5hati+2ha...

    Text Solution

    |

  16. Number of complex number z satisfying |z+2|+|z-2|=8 and |z-1|+|z+1|=2,...

    Text Solution

    |

  17. If z(1) satisfies |z-1|=1 and z(2) satisfies |z-4i|=1, then |z(1)-z(2)...

    Text Solution

    |

  18. The number of integral values of k for which the inequality x^(2)-2(...

    Text Solution

    |

  19. Let vec(a),vec(b),vec( c ) be three non-coplanar vectors. If (x+2y+z...

    Text Solution

    |

  20. If alpha is a root of x^(2)-x+1=0 and beta be the digit at unit place ...

    Text Solution

    |