Home
Class 12
MATHS
If alpha is a root of x^(2)-x+1=0 and be...

If `alpha` is a root of `x^(2)-x+1=0` and `beta` be the digit at unit place in the number `2^(2^(n))-5,n in N(n gt 1)`, then `alpha^(2005)+alpha^(-2005)+beta^(2006)+beta^(-2006)` is equal to ____________

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ \alpha^{2005} + \alpha^{-2005} + \beta^{2006} + \beta^{-2006} \] where \(\alpha\) is a root of the equation \(x^2 - x + 1 = 0\) and \(\beta\) is the unit digit of \(2^{2^n} - 5\) for \(n \in \mathbb{N}\) and \(n > 1\). ### Step 1: Find the roots \(\alpha\) We start with the quadratic equation: \[ x^2 - x + 1 = 0 \] Using the quadratic formula, the roots are given by: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \(a = 1\), \(b = -1\), and \(c = 1\). Substituting these values: \[ x = \frac{1 \pm \sqrt{(-1)^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1} = \frac{1 \pm \sqrt{1 - 4}}{2} = \frac{1 \pm \sqrt{-3}}{2} \] This simplifies to: \[ x = \frac{1 \pm i\sqrt{3}}{2} \] Thus, the roots are: \[ \alpha_1 = \frac{1 + i\sqrt{3}}{2}, \quad \alpha_2 = \frac{1 - i\sqrt{3}}{2} \] ### Step 2: Calculate \(\alpha^{2005} + \alpha^{-2005}\) Using the exponential form, we can express \(\alpha\) in terms of Euler's formula: \[ \alpha = e^{i\pi/3} \quad \text{and} \quad \alpha^{-1} = e^{-i\pi/3} \] Thus, we can write: \[ \alpha^{2005} = \left(e^{i\pi/3}\right)^{2005} = e^{i \cdot \frac{2005\pi}{3}} \quad \text{and} \quad \alpha^{-2005} = \left(e^{-i\pi/3}\right)^{2005} = e^{-i \cdot \frac{2005\pi}{3}} \] Now, we need to simplify \(e^{i \cdot \frac{2005\pi}{3}}\): Calculating \(2005 \mod 6\) (since \(2\pi\) has a period of \(6\)): \[ 2005 \div 6 = 334 \quad \text{remainder } 1 \] Thus, \[ \frac{2005\pi}{3} = 334 \cdot 2\pi + \frac{\pi}{3} \] So, \[ e^{i \cdot \frac{2005\pi}{3}} = e^{i \cdot \frac{\pi}{3}} \quad \text{and} \quad e^{-i \cdot \frac{2005\pi}{3}} = e^{-i \cdot \frac{\pi}{3}} \] Now we can combine these: \[ \alpha^{2005} + \alpha^{-2005} = e^{i\frac{\pi}{3}} + e^{-i\frac{\pi}{3}} = 2\cos\left(\frac{\pi}{3}\right) = 2 \cdot \frac{1}{2} = 1 \] ### Step 3: Find \(\beta\) Next, we need to find \(\beta\), the unit digit of \(2^{2^n} - 5\) for \(n > 1\). Calculating \(2^{2^n}\) for \(n = 2, 3, 4\): - For \(n = 2\): \(2^{2^2} = 2^4 = 16\) (unit digit is 6) - For \(n = 3\): \(2^{2^3} = 2^8 = 256\) (unit digit is 6) - For \(n = 4\): \(2^{2^4} = 2^{16} = 65536\) (unit digit is 6) Thus, the unit digit of \(2^{2^n}\) is always 6 for \(n > 1\). Therefore, the unit digit of \(2^{2^n} - 5\) is: \[ 6 - 5 = 1 \] So, \(\beta = 1\). ### Step 4: Calculate \(\beta^{2006} + \beta^{-2006}\) Since \(\beta = 1\): \[ \beta^{2006} = 1^{2006} = 1 \quad \text{and} \quad \beta^{-2006} = 1^{-2006} = 1 \] Thus, \[ \beta^{2006} + \beta^{-2006} = 1 + 1 = 2 \] ### Final Step: Combine results Finally, we combine the results: \[ \alpha^{2005} + \alpha^{-2005} + \beta^{2006} + \beta^{-2006} = 1 + 2 = 3 \] Thus, the final answer is: \[ \boxed{3} \]
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICS TIPS

    FIITJEE|Exercise NUMERICAL DECIMAL BASED QUESTIONS|21 Videos
  • MATHEMATICS TIPS

    FIITJEE|Exercise PARAGRAPH BASED (MULTIPLE CHOICE) (COMPERHENSION - XVI)|3 Videos
  • MATHEMATICS

    FIITJEE|Exercise NUMERICAL DECIMAL BASED QUESTIONS|15 Videos
  • MATRICES

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

If alpha and beta are the roots of 2x^(2) - x - 2 = 0 , then (alpha^(3) + beta^(-3) + 2alpha^(-1) beta^(-1)) is equal to

If alpha,beta are the roots of x^(2)-2x+4=0 then alpha^(n)+beta^(n) is

If alpha,beta be the roots of x^(2)-x-1=0 and A_(n)=alpha^(n)+beta^(n), then A . M of A_(n-1) and A_(n), is

If alpha, beta are roots of 375x^(2)-25x-2=0 and s_(n)=alpha^(n)+beta^(n) , then lim_(n to oo) sum_(r=1)^(n)S_(r) is

If alpha and beta are the roots of the equation 375 x^(2) - 25x - 2 = 0 , then lim_(n to oo) Sigma^(n) alpha^(r) + lim_(n to oo) Sigma^(n) beta^(r) is equal to :

If alpha and beta are the roots of x^(2)+4x+6=0 and N=1/((alpha)/(beta)+(beta)/(alpha)) then N=

Let alpha and beta be the roots of x^(2)+x+1=0 If n be positive integer,then alpha^(n)+beta^(n) is

FIITJEE-MATHEMATICS TIPS-NUMERICAL RASED QUESTIONS
  1. If a,b,c are three positive real numbers then the minimum value of the...

    Text Solution

    |

  2. Suppose that w is the imaginary (2009)^("th") roots of unity. If (2^...

    Text Solution

    |

  3. If alpha is the absolute maximum value of the expression (3x^(2)+2x-1)...

    Text Solution

    |

  4. Let (x, y, z) be points with integer coordinates satisfying the system...

    Text Solution

    |

  5. The number of integral values of a , a in (6,100) for which the equati...

    Text Solution

    |

  6. Given vec(a)=3hati+2hatj+4hatk,vec(b)=2(hati+hatk) and vec( c )=4hati+...

    Text Solution

    |

  7. OABC is a tetrahedron in which O is the origin and position vector ot ...

    Text Solution

    |

  8. The sum of the factors of 9! Which are odd and are of the form 3m+2, w...

    Text Solution

    |

  9. The number of solutions of theta in [0,2pi] satisfying the equation ...

    Text Solution

    |

  10. The equation of the plane passing through the intersection of the plan...

    Text Solution

    |

  11. Let x, y, z be three positive real numbers such that x+y+z=1 then the ...

    Text Solution

    |

  12. A quadratic equation with integral coefficients has two different prim...

    Text Solution

    |

  13. The number of lines represented by the equation x^(2)=y^(2)=z^(2), is

    Text Solution

    |

  14. The remainder when (2345)^(676)+(1234)^(567) is divided by 4 is

    Text Solution

    |

  15. If vec(A)=hati-3hatj+4hatk,vec(B)=6hati+4hatj-8hatk,vec( C )=5hati+2ha...

    Text Solution

    |

  16. Number of complex number z satisfying |z+2|+|z-2|=8 and |z-1|+|z+1|=2,...

    Text Solution

    |

  17. If z(1) satisfies |z-1|=1 and z(2) satisfies |z-4i|=1, then |z(1)-z(2)...

    Text Solution

    |

  18. The number of integral values of k for which the inequality x^(2)-2(...

    Text Solution

    |

  19. Let vec(a),vec(b),vec( c ) be three non-coplanar vectors. If (x+2y+z...

    Text Solution

    |

  20. If alpha is a root of x^(2)-x+1=0 and beta be the digit at unit place ...

    Text Solution

    |