Home
Class 11
MATHS
If 9^7+7^9 is divisible b 2^n , then fin...

If `9^7+7^9` is divisible b `2^n , `then find the greatest value of `n` ,where `n in N`.

A

5

B

6

C

7

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the greatest value of \( n \) such that \( 9^7 + 7^9 \) is divisible by \( 2^n \), we can follow these steps: ### Step 1: Rewrite the expression We start with the expression \( 9^7 + 7^9 \). We can rewrite \( 9 \) as \( 8 + 1 \) and \( 7 \) as \( 8 - 1 \): \[ 9^7 + 7^9 = (8 + 1)^7 + (8 - 1)^9 \] ### Step 2: Apply the Binomial Theorem Using the Binomial Theorem, we expand both terms: \[ (8 + 1)^7 = \sum_{k=0}^{7} \binom{7}{k} 8^k 1^{7-k} = 8^0 + 7 \cdot 8^1 + 21 \cdot 8^2 + 35 \cdot 8^3 + 35 \cdot 8^4 + 21 \cdot 8^5 + 7 \cdot 8^6 + 1 \cdot 8^7 \] \[ (8 - 1)^9 = \sum_{k=0}^{9} \binom{9}{k} 8^k (-1)^{9-k} = -1 \cdot 8^0 + 9 \cdot 8^1 - 36 \cdot 8^2 + 84 \cdot 8^3 - 126 \cdot 8^4 + 126 \cdot 8^5 - 84 \cdot 8^6 + 36 \cdot 8^7 - 9 \cdot 8^8 + 1 \cdot 8^9 \] ### Step 3: Combine the expansions Now we combine the two expansions: \[ 9^7 + 7^9 = \left(1 + 7 \cdot 8 + 21 \cdot 8^2 + 35 \cdot 8^3 + 35 \cdot 8^4 + 21 \cdot 8^5 + 7 \cdot 8^6 + 8^7\right) + \left(-1 + 9 \cdot 8 - 36 \cdot 8^2 + 84 \cdot 8^3 - 126 \cdot 8^4 + 126 \cdot 8^5 - 84 \cdot 8^6 + 36 \cdot 8^7 - 9 \cdot 8^8 + 8^9\right) \] ### Step 4: Simplify the expression When we simplify this expression, we notice that the constant terms cancel out: \[ = (7 + 9) \cdot 8 + (21 - 36) \cdot 8^2 + (35 + 84) \cdot 8^3 + (35 - 126) \cdot 8^4 + (21 + 126) \cdot 8^5 + (7 - 84) \cdot 8^6 + (1 + 36) \cdot 8^7 + (8^9 - 9 \cdot 8^8) \] ### Step 5: Factor out powers of 2 Notice that \( 8 = 2^3 \), so we can factor out \( 2^6 \) from the expression: \[ = 2^6 \cdot (k) \quad \text{(where \( k \) is some integer)} \] ### Step 6: Determine the value of \( n \) Since we have factored out \( 2^6 \), we conclude that \( 9^7 + 7^9 \) is divisible by \( 2^6 \). Therefore, the greatest value of \( n \) such that \( 9^7 + 7^9 \) is divisible by \( 2^n \) is: \[ \boxed{6} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    CENGAGE|Exercise Solved Examples And Exercises|439 Videos

Similar Questions

Explore conceptually related problems

If 133! is divisible by 7^(n) then find the maximum value of n.

n^7-n is divisible by 42 .

If 10^n + 3.4^n + K is divisible by 9 for all n in N then the least value of K is

9^(n)-8^(n)-1 is divisible by 64 is

CENGAGE-BINOMIAL THEOREM-Solved Examples And Exercises
  1. If (2+sqrt(3))^n=I+f, whare I and n are positive integers and 0<f<1, s...

    Text Solution

    |

  2. Find the degree of the polynomial 1/(sqrt(4x+1)){((1+sqrt(4x+1))/2)^7-...

    Text Solution

    |

  3. If 9^7+7^9 is divisible b 2^n , then find the greatest value of n ,whe...

    Text Solution

    |

  4. Prove that sqrt(10)[(sqrt(10)+1)^(100)-(sqrt(10)-1)^(100)] is an even ...

    Text Solution

    |

  5. Find the remainder when x=5^(5^5^(5) (24 times 5) is divided by 24.

    Text Solution

    |

  6. Find the remainder when 1690^(2608)+2608^(1690) is divided by 7.

    Text Solution

    |

  7. Find the value of {3^(2003)//28}, w h e r e{dot} denotes the fractiona...

    Text Solution

    |

  8. Find the remainder when 5^(99) is divided by 13.

    Text Solution

    |

  9. Find the remainder when 7^(103) is divided by 25.

    Text Solution

    |

  10. Using binomial theorem, prove that 6^n-5n always leaves remainder 1...

    Text Solution

    |

  11. If the coefficient of the middle term in the expansion of (1+x)^(2n+2)...

    Text Solution

    |

  12. If the coefficients of three consecutive terms in the expansion of (1+...

    Text Solution

    |

  13. In the coefficients of rth, (r+1)t h ,a n d(r+2)t h terms in the binom...

    Text Solution

    |

  14. (C0+C1)(C1+C2)(C2+C3)(C3+C4)...........(C(n-1)+Cn)=(C0C1C2.....C(n-1)(...

    Text Solution

    |

  15. If a1,a2, a3, a4 be the coefficient of four consecutive terms in the e...

    Text Solution

    |

  16. Find the sum of sum(r=1)^n(r^n Cr)/(^n C(r-1) .

    Text Solution

    |

  17. Find the positive integer just greater than (1+0. 0001)^(10000)dot

    Text Solution

    |

  18. Find (i) the last digit, (ii) the last two digits, and (iii) the last ...

    Text Solution

    |

  19. If 10^m divides the number 101^(100)-1 then, find the greatest value o...

    Text Solution

    |

  20. Using the principle of mathematical induction, prove that (2^(3n)-1) i...

    Text Solution

    |