Home
Class 12
MATHS
f(x)={{:((1-cos2x)/(x^(2)),if x ne 0),(5...

` f(x)={{:((1-cos2x)/(x^(2)),if x ne 0),(5, if x = 0):}` at `x = 0`.

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether the function \[ f(x) = \begin{cases} \frac{1 - \cos(2x)}{x^2} & \text{if } x \neq 0 \\ 5 & \text{if } x = 0 \end{cases} \] is continuous at \( x = 0 \), we need to check the left-hand limit, right-hand limit, and the value of the function at that point. ### Step 1: Calculate the Left-Hand Limit We start by calculating the left-hand limit as \( x \) approaches 0: \[ \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} \frac{1 - \cos(2x)}{x^2} \] To evaluate this limit, we can substitute \( x \) with \( -h \) (where \( h \to 0^+ \)): \[ \lim_{h \to 0} \frac{1 - \cos(-2h)}{(-h)^2} = \lim_{h \to 0} \frac{1 - \cos(2h)}{h^2} \] ### Step 2: Use the Cosine Identity Using the identity \( 1 - \cos(2h) = 2\sin^2(h) \): \[ \lim_{h \to 0} \frac{2\sin^2(h)}{h^2} \] ### Step 3: Simplify the Limit We can rewrite the limit as: \[ \lim_{h \to 0} 2 \cdot \frac{\sin^2(h)}{h^2} = 2 \cdot \lim_{h \to 0} \left(\frac{\sin(h)}{h}\right)^2 \] Since \( \lim_{h \to 0} \frac{\sin(h)}{h} = 1 \): \[ \lim_{h \to 0} 2 \cdot 1^2 = 2 \] Thus, the left-hand limit is: \[ \lim_{x \to 0^-} f(x) = 2 \] ### Step 4: Calculate the Right-Hand Limit Now, we calculate the right-hand limit as \( x \) approaches 0: \[ \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{1 - \cos(2x)}{x^2} \] Using the same substitution \( x = h \) (where \( h \to 0^+ \)): \[ \lim_{h \to 0} \frac{1 - \cos(2h)}{h^2} \] Using the same cosine identity: \[ \lim_{h \to 0} \frac{2\sin^2(h)}{h^2} = 2 \cdot \lim_{h \to 0} \left(\frac{\sin(h)}{h}\right)^2 = 2 \cdot 1^2 = 2 \] Thus, the right-hand limit is: \[ \lim_{x \to 0^+} f(x) = 2 \] ### Step 5: Compare Limits and Function Value Now we compare the limits and the function value at \( x = 0 \): - Left-hand limit: \( 2 \) - Right-hand limit: \( 2 \) - Value of the function at \( x = 0 \): \( f(0) = 5 \) ### Conclusion Since the left-hand limit and right-hand limit are equal but do not equal the value of the function at \( x = 0 \): \[ \lim_{x \to 0} f(x) = 2 \neq f(0) = 5 \] Thus, the function \( f(x) \) is **discontinuous** at \( x = 0 \). ---

To determine whether the function \[ f(x) = \begin{cases} \frac{1 - \cos(2x)}{x^2} & \text{if } x \neq 0 \\ 5 & \text{if } x = 0 \end{cases} ...
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR|Exercise Application Of Integrals|68 Videos
  • DETERMINANTS

    NCERT EXEMPLAR|Exercise Determinants|58 Videos

Similar Questions

Explore conceptually related problems

f(x) = {{:((1-cosAx)/(x sinx), if x ne 0),(1/2, if x = 0):} at x = 0

f(x) = {{:((1-coskx)/(x sinx), if x ne 0),(1/2, if x = 0):} at x = 0

Discuss the continuity of f(x) ={:{((sin^2 2x)/(x^2)", "x ne 0),(1", " x= 0):}, at x=0.

f(x) = {{:(x^(2)sin'1/x, if x ne 0),(0, if x = 0):} at x = 0 .

f(x)={{:(|x|cos'1/x, if x ne 0),(0, if x =0):} at x = 0 .

f(x)={{:(|x|cos\ 1/x, if x ne 0),(0, if x =0):} at x = 0 .

If f(x)= {{:(,(1)/(x)-(2)/(e^(2x)-1),x ne 0),(,1,x=0):}

If f(x)={{:(x^(p+1)cos.(1)/(x)":", x ne 0),(0":", x=0):} then at x = 0 the function f(x) is

NCERT EXEMPLAR-CONTINUITY AND DIFFERENTIABILITY-Continuity And Differentiability
  1. Examine continuity of the function f(x) = x^(3) + 2x^(2)- 1 at x = 1...

    Text Solution

    |

  2. f(x)={{:(3x+5, if x ge 2),(x^(3), if x le 2):}at x = 2

    Text Solution

    |

  3. f(x)={{:((1-cos2x)/(x^(2)),if x ne 0),(5, if x = 0):} at x = 0.

    Text Solution

    |

  4. f(x) = {{:((2x^(2)-3x-2)/(x-2), if x ne 2), (5, if x = 2):} at x = 2.

    Text Solution

    |

  5. f(x)= {{:((|x-4|)/(2(x-4)), if x ne 4),(0,if x = 4):} at x = 4.

    Text Solution

    |

  6. f(x)={{:(|x|cos'1/x, if x ne 0),(0, if x =0):} at x = 0 .

    Text Solution

    |

  7. Find that the function is continuous or discontinuous at the indicated...

    Text Solution

    |

  8. f(x)={{:(e^(1//x)/(1+e^(1//x)),if x ne 0),(0,if x = 0):}at x = 0

    Text Solution

    |

  9. {{:(x^(2)/2, if 0le x le 1),(2x^(2)-3x+3/2, if l lt x le 2):} at x = ...

    Text Solution

    |

  10. f(x) = |x| + |x-1| at x = 1.

    Text Solution

    |

  11. f(x)={{:(3x-8, if x le 5),(2k, if x gt 5) :} at x = 5

    Text Solution

    |

  12. f(x) ={{:((2^(x+2)-16)/(4^(x)-16), if x ne 2 ),(k, if x = 2):} ,x = 2.

    Text Solution

    |

  13. f(x) = {{:((sqrt(1+kx)-sqrt(1-kx))/(x),if -1 le x lt 0),((2x+1)/(x-1...

    Text Solution

    |

  14. The value of k for which the function defined as f(x) = {{:((1-coskx)...

    Text Solution

    |

  15. Prove that the function f defined by f(x) = {{:((x)/(|x|+2x^(2)), if ...

    Text Solution

    |

  16. Find the values of a and b sucht that the function f defined by ...

    Text Solution

    |

  17. Given the function f(x)=1/(x+2) . Find the points of discontinuity of...

    Text Solution

    |

  18. Find all point of discontinuity of the function f(t)=1/(t^2+t-2), wher...

    Text Solution

    |

  19. Show that the function f(x)=|sinx+cosx| is continuous at x=pi .

    Text Solution

    |

  20. Examine the differentiability of f, where f is defined by f(x) = {{:(...

    Text Solution

    |