Home
Class 12
MATHS
f(x) = {{:((2x^(2)-3x-2)/(x-2), if x ne ...

`f(x) = {{:((2x^(2)-3x-2)/(x-2), if x ne 2), (5, if x = 2):}` at `x = 2`.

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether the function \( f(x) \) is continuous at \( x = 2 \), we need to check the left-hand limit, right-hand limit, and the value of the function at that point. Given: \[ f(x) = \begin{cases} \frac{2x^2 - 3x - 2}{x - 2} & \text{if } x \neq 2 \\ 5 & \text{if } x = 2 \end{cases} \] ### Step 1: Calculate the Left-Hand Limit as \( x \) approaches 2 We calculate the left-hand limit: \[ \lim_{x \to 2^-} f(x) = \lim_{x \to 2^-} \frac{2x^2 - 3x - 2}{x - 2} \] Substituting \( x = 2 - h \) where \( h \to 0^+ \): \[ \lim_{h \to 0} \frac{2(2 - h)^2 - 3(2 - h) - 2}{(2 - h) - 2} \] Expanding the numerator: \[ = \lim_{h \to 0} \frac{2(4 - 4h + h^2) - 6 + 3h - 2}{-h} \] \[ = \lim_{h \to 0} \frac{8 - 8h + 2h^2 - 6 + 3h - 2}{-h} \] \[ = \lim_{h \to 0} \frac{2h^2 - 5h}{-h} \] \[ = \lim_{h \to 0} - (2h - 5) \] As \( h \to 0 \): \[ = 5 \] ### Step 2: Calculate the Right-Hand Limit as \( x \) approaches 2 Now we calculate the right-hand limit: \[ \lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} \frac{2x^2 - 3x - 2}{x - 2} \] Substituting \( x = 2 + h \) where \( h \to 0^+ \): \[ \lim_{h \to 0} \frac{2(2 + h)^2 - 3(2 + h) - 2}{(2 + h) - 2} \] Expanding the numerator: \[ = \lim_{h \to 0} \frac{2(4 + 4h + h^2) - 6 - 3h - 2}{h} \] \[ = \lim_{h \to 0} \frac{8 + 8h + 2h^2 - 6 - 3h - 2}{h} \] \[ = \lim_{h \to 0} \frac{2h^2 + 5h}{h} \] \[ = \lim_{h \to 0} (2h + 5) \] As \( h \to 0 \): \[ = 5 \] ### Step 3: Evaluate \( f(2) \) From the definition of the function: \[ f(2) = 5 \] ### Conclusion Since: \[ \lim_{x \to 2^-} f(x) = 5, \quad \lim_{x \to 2^+} f(x) = 5, \quad \text{and } f(2) = 5 \] We conclude that: \[ \lim_{x \to 2} f(x) = f(2) \] Thus, \( f(x) \) is continuous at \( x = 2 \).

To determine whether the function \( f(x) \) is continuous at \( x = 2 \), we need to check the left-hand limit, right-hand limit, and the value of the function at that point. Given: \[ f(x) = \begin{cases} \frac{2x^2 - 3x - 2}{x - 2} & \text{if } x \neq 2 \\ 5 & \text{if } x = 2 ...
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR|Exercise Application Of Integrals|68 Videos
  • DETERMINANTS

    NCERT EXEMPLAR|Exercise Determinants|58 Videos

Similar Questions

Explore conceptually related problems

f(x) ={{:((2^(x+2)-16)/(4^(x)-16), if x ne 2 ),(k, if x = 2):} , x = 2 .

f(x)={{:((1-cos2x)/(x^(2)),if x ne 0),(5, if x = 0):} at x = 0 .

Let f(x) ={{:((x^(3)+x^(2)-16x+20)//(x-2)^(2)"," if x ne 2),(R", "if x = 2):} If f(x) is continuous for all x, then k = … .

Examine the continuity of f(x) = {(|x-2|/(x-2), x ne 2),(1, x =2):} at x = 2

f(x)={{:(3x+5, if x ge 2),(x^(3), if x le 2):} at x = 2

f(x)={{:(3x+5, if x ge 2),(x^(3), if x le 2):} at x = 2

If f(x)= {:{((x^(2)-4)/(x-2)", for " x!=2),(5", for " x=2):} , then at x=2

NCERT EXEMPLAR-CONTINUITY AND DIFFERENTIABILITY-Continuity And Differentiability
  1. f(x)={{:(3x+5, if x ge 2),(x^(3), if x le 2):}at x = 2

    Text Solution

    |

  2. f(x)={{:((1-cos2x)/(x^(2)),if x ne 0),(5, if x = 0):} at x = 0.

    Text Solution

    |

  3. f(x) = {{:((2x^(2)-3x-2)/(x-2), if x ne 2), (5, if x = 2):} at x = 2.

    Text Solution

    |

  4. f(x)= {{:((|x-4|)/(2(x-4)), if x ne 4),(0,if x = 4):} at x = 4.

    Text Solution

    |

  5. f(x)={{:(|x|cos'1/x, if x ne 0),(0, if x =0):} at x = 0 .

    Text Solution

    |

  6. Find that the function is continuous or discontinuous at the indicated...

    Text Solution

    |

  7. f(x)={{:(e^(1//x)/(1+e^(1//x)),if x ne 0),(0,if x = 0):}at x = 0

    Text Solution

    |

  8. {{:(x^(2)/2, if 0le x le 1),(2x^(2)-3x+3/2, if l lt x le 2):} at x = ...

    Text Solution

    |

  9. f(x) = |x| + |x-1| at x = 1.

    Text Solution

    |

  10. f(x)={{:(3x-8, if x le 5),(2k, if x gt 5) :} at x = 5

    Text Solution

    |

  11. f(x) ={{:((2^(x+2)-16)/(4^(x)-16), if x ne 2 ),(k, if x = 2):} ,x = 2.

    Text Solution

    |

  12. f(x) = {{:((sqrt(1+kx)-sqrt(1-kx))/(x),if -1 le x lt 0),((2x+1)/(x-1...

    Text Solution

    |

  13. The value of k for which the function defined as f(x) = {{:((1-coskx)...

    Text Solution

    |

  14. Prove that the function f defined by f(x) = {{:((x)/(|x|+2x^(2)), if ...

    Text Solution

    |

  15. Find the values of a and b sucht that the function f defined by ...

    Text Solution

    |

  16. Given the function f(x)=1/(x+2) . Find the points of discontinuity of...

    Text Solution

    |

  17. Find all point of discontinuity of the function f(t)=1/(t^2+t-2), wher...

    Text Solution

    |

  18. Show that the function f(x)=|sinx+cosx| is continuous at x=pi .

    Text Solution

    |

  19. Examine the differentiability of f, where f is defined by f(x) = {{:(...

    Text Solution

    |

  20. If f(x) = x^(2)sin'(1)/(x), where x ne 0, then the value of the functi...

    Text Solution

    |