Home
Class 12
MATHS
f(x)= {{:((|x-4|)/(2(x-4)), if x ne 4),...

`f(x)= {{:((|x-4|)/(2(x-4)), if x ne 4),(0,if x = 4):}` at `x = 4`.

Text Solution

AI Generated Solution

The correct Answer is:
To determine the continuity of the function \( f(x) \) at \( x = 4 \), we need to analyze the left-hand limit, right-hand limit, and the value of the function at that point. The function is defined as: \[ f(x) = \begin{cases} \frac{|x - 4|}{2(x - 4)} & \text{if } x \neq 4 \\ 0 & \text{if } x = 4 \end{cases} \] ### Step 1: Calculate the left-hand limit as \( x \) approaches 4. We need to find: \[ \lim_{x \to 4^-} f(x) = \lim_{x \to 4^-} \frac{|x - 4|}{2(x - 4)} \] Since \( x \) is approaching 4 from the left, \( |x - 4| = 4 - x \). Thus, we can rewrite the limit: \[ \lim_{x \to 4^-} \frac{4 - x}{2(x - 4)} = \lim_{x \to 4^-} \frac{-(x - 4)}{2(x - 4)} = \lim_{x \to 4^-} \frac{-1}{2} = -\frac{1}{2} \] ### Step 2: Calculate the right-hand limit as \( x \) approaches 4. Next, we find: \[ \lim_{x \to 4^+} f(x) = \lim_{x \to 4^+} \frac{|x - 4|}{2(x - 4)} \] Since \( x \) is approaching 4 from the right, \( |x - 4| = x - 4 \). Thus, we can rewrite the limit: \[ \lim_{x \to 4^+} \frac{x - 4}{2(x - 4)} = \lim_{x \to 4^+} \frac{1}{2} = \frac{1}{2} \] ### Step 3: Determine the value of the function at \( x = 4 \). From the definition of the function: \[ f(4) = 0 \] ### Step 4: Check for continuity. For \( f(x) \) to be continuous at \( x = 4 \), the following must hold: \[ \lim_{x \to 4^-} f(x) = \lim_{x \to 4^+} f(x) = f(4) \] We found: - \( \lim_{x \to 4^-} f(x) = -\frac{1}{2} \) - \( \lim_{x \to 4^+} f(x) = \frac{1}{2} \) - \( f(4) = 0 \) Since the left-hand limit and right-hand limit are not equal, and neither is equal to \( f(4) \), we conclude that \( f(x) \) is discontinuous at \( x = 4 \). ### Final Conclusion: The function \( f(x) \) is discontinuous at \( x = 4 \). ---

To determine the continuity of the function \( f(x) \) at \( x = 4 \), we need to analyze the left-hand limit, right-hand limit, and the value of the function at that point. The function is defined as: \[ f(x) = \begin{cases} \frac{|x - 4|}{2(x - 4)} & \text{if } x \neq 4 \\ 0 & \text{if } x = 4 ...
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR|Exercise Application Of Integrals|68 Videos
  • DETERMINANTS

    NCERT EXEMPLAR|Exercise Determinants|58 Videos

Similar Questions

Explore conceptually related problems

Examine the continuity of the function : f(x)={{:((|x-4|)/((x-4))", if "xne4),(0" , if "x=4):} at x = 4.

Consider the function f(x)={{:(sin(x-4).tan^(-1)((1)/(x-4)),x ne 4),(0,x=4):} , then

If f(x)={:{(x+2", if " x le 4),(x+4", if " x gt 4):} , then

Divide ((-12x+48))/((x-4)) , when x ne 4

Let f(x)= {{:(,(tanx-cotx)/(x-(pi)/(4)),x ne (pi)/(4)),(,a,x=(pi)/(4)):} The value of a so that f(x) is a continous at x=pi//4 is.

f(x)=x(x-4)^(2), interval [0,4]

NCERT EXEMPLAR-CONTINUITY AND DIFFERENTIABILITY-Continuity And Differentiability
  1. f(x)={{:((1-cos2x)/(x^(2)),if x ne 0),(5, if x = 0):} at x = 0.

    Text Solution

    |

  2. f(x) = {{:((2x^(2)-3x-2)/(x-2), if x ne 2), (5, if x = 2):} at x = 2.

    Text Solution

    |

  3. f(x)= {{:((|x-4|)/(2(x-4)), if x ne 4),(0,if x = 4):} at x = 4.

    Text Solution

    |

  4. f(x)={{:(|x|cos'1/x, if x ne 0),(0, if x =0):} at x = 0 .

    Text Solution

    |

  5. Find that the function is continuous or discontinuous at the indicated...

    Text Solution

    |

  6. f(x)={{:(e^(1//x)/(1+e^(1//x)),if x ne 0),(0,if x = 0):}at x = 0

    Text Solution

    |

  7. {{:(x^(2)/2, if 0le x le 1),(2x^(2)-3x+3/2, if l lt x le 2):} at x = ...

    Text Solution

    |

  8. f(x) = |x| + |x-1| at x = 1.

    Text Solution

    |

  9. f(x)={{:(3x-8, if x le 5),(2k, if x gt 5) :} at x = 5

    Text Solution

    |

  10. f(x) ={{:((2^(x+2)-16)/(4^(x)-16), if x ne 2 ),(k, if x = 2):} ,x = 2.

    Text Solution

    |

  11. f(x) = {{:((sqrt(1+kx)-sqrt(1-kx))/(x),if -1 le x lt 0),((2x+1)/(x-1...

    Text Solution

    |

  12. The value of k for which the function defined as f(x) = {{:((1-coskx)...

    Text Solution

    |

  13. Prove that the function f defined by f(x) = {{:((x)/(|x|+2x^(2)), if ...

    Text Solution

    |

  14. Find the values of a and b sucht that the function f defined by ...

    Text Solution

    |

  15. Given the function f(x)=1/(x+2) . Find the points of discontinuity of...

    Text Solution

    |

  16. Find all point of discontinuity of the function f(t)=1/(t^2+t-2), wher...

    Text Solution

    |

  17. Show that the function f(x)=|sinx+cosx| is continuous at x=pi .

    Text Solution

    |

  18. Examine the differentiability of f, where f is defined by f(x) = {{:(...

    Text Solution

    |

  19. If f(x) = x^(2)sin'(1)/(x), where x ne 0, then the value of the functi...

    Text Solution

    |

  20. Examine the differentiability of f, where f is defined by f(x)={{:...

    Text Solution

    |