Home
Class 12
MATHS
f(x)={{:(e^(1//x)/(1+e^(1//x)),if x ne 0...

`f(x)={{:(e^(1//x)/(1+e^(1//x)),if x ne 0),(0,if x = 0):}at `x = 0`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the continuity of the function \( f(x) \) at \( x = 0 \), we need to analyze the function defined as: \[ f(x) = \begin{cases} \frac{e^{\frac{1}{x}}}{1 + e^{\frac{1}{x}} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases} \] ### Step 1: Find \( f(0) \) By definition, when \( x = 0 \): \[ f(0) = 0 \] ### Step 2: Find \( \lim_{x \to 0} f(x) \) We need to evaluate the limit of \( f(x) \) as \( x \) approaches 0 from both sides (left and right). Since \( f(x) \) is defined differently for \( x = 0 \), we only consider the case when \( x \neq 0 \): \[ \lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{e^{\frac{1}{x}}}{1 + e^{\frac{1}{x}}} \] ### Step 3: Analyze the limit as \( x \to 0 \) As \( x \) approaches 0 from the right (i.e., \( x \to 0^+ \)), \( \frac{1}{x} \) approaches \( +\infty \). Therefore, we can evaluate the limit: \[ \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{e^{\frac{1}{x}}}{1 + e^{\frac{1}{x}}} = \frac{e^{+\infty}}{1 + e^{+\infty}} = \frac{\infty}{\infty} = 1 \] As \( x \) approaches 0 from the left (i.e., \( x \to 0^- \)), \( \frac{1}{x} \) approaches \( -\infty \): \[ \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} \frac{e^{\frac{1}{x}}}{1 + e^{\frac{1}{x}}} = \frac{e^{-\infty}}{1 + e^{-\infty}} = \frac{0}{1} = 0 \] ### Step 4: Conclude the limit Since the left-hand limit and the right-hand limit are not equal: \[ \lim_{x \to 0} f(x) \text{ does not exist.} \] ### Step 5: Check continuity For \( f(x) \) to be continuous at \( x = 0 \), the following must hold: \[ \lim_{x \to 0} f(x) = f(0) \] We found that: \[ \lim_{x \to 0} f(x) \text{ does not exist (as it approaches 1 from the right and 0 from the left)} \] and \[ f(0) = 0 \] Since \( \lim_{x \to 0} f(x) \neq f(0) \), the function \( f(x) \) is discontinuous at \( x = 0 \). ### Final Conclusion Thus, the function \( f(x) \) is discontinuous at \( x = 0 \). ---

To determine the continuity of the function \( f(x) \) at \( x = 0 \), we need to analyze the function defined as: \[ f(x) = \begin{cases} \frac{e^{\frac{1}{x}}}{1 + e^{\frac{1}{x}} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases} ...
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR|Exercise Application Of Integrals|68 Videos
  • DETERMINANTS

    NCERT EXEMPLAR|Exercise Determinants|58 Videos

Similar Questions

Explore conceptually related problems

Examine the continuity of the following function at the indicated pionts. f(x)={{:(,(e^(1/x)-1)/(e^(1/x)+1), x ne 0),(,0, x =0):}" at x=0"

If f(x) = {{:((1)/(e^(1//x))",",x ne 0),(0",",x = 0):} then

f(x) = {{:((1-coskx)/(x sinx), if x ne 0),(1/2, if x = 0):} at x = 0

f(x) = {{:((1-cosAx)/(x sinx), if x ne 0),(1/2, if x = 0):} at x = 0

The function f given by f(x)={((e^(1//x)-1)/(e^(1//x)+1)",","if",x ne 0),(0",","if", x =0):} , is

f(x) = {{:(x^(2)sin'1/x, if x ne 0),(0, if x = 0):} at x = 0 .

If f(x) = {{:(1/(1+e^(1//x)), x ne 0),(0,x=0):} then f(x) is

If f(x)={((1)/(1+e^(1//x))"," ,x ne 0),(0",", x =0):} then f(x) is :

NCERT EXEMPLAR-CONTINUITY AND DIFFERENTIABILITY-Continuity And Differentiability
  1. f(x)={{:(|x|cos'1/x, if x ne 0),(0, if x =0):} at x = 0 .

    Text Solution

    |

  2. Find that the function is continuous or discontinuous at the indicated...

    Text Solution

    |

  3. f(x)={{:(e^(1//x)/(1+e^(1//x)),if x ne 0),(0,if x = 0):}at x = 0

    Text Solution

    |

  4. {{:(x^(2)/2, if 0le x le 1),(2x^(2)-3x+3/2, if l lt x le 2):} at x = ...

    Text Solution

    |

  5. f(x) = |x| + |x-1| at x = 1.

    Text Solution

    |

  6. f(x)={{:(3x-8, if x le 5),(2k, if x gt 5) :} at x = 5

    Text Solution

    |

  7. f(x) ={{:((2^(x+2)-16)/(4^(x)-16), if x ne 2 ),(k, if x = 2):} ,x = 2.

    Text Solution

    |

  8. f(x) = {{:((sqrt(1+kx)-sqrt(1-kx))/(x),if -1 le x lt 0),((2x+1)/(x-1...

    Text Solution

    |

  9. The value of k for which the function defined as f(x) = {{:((1-coskx)...

    Text Solution

    |

  10. Prove that the function f defined by f(x) = {{:((x)/(|x|+2x^(2)), if ...

    Text Solution

    |

  11. Find the values of a and b sucht that the function f defined by ...

    Text Solution

    |

  12. Given the function f(x)=1/(x+2) . Find the points of discontinuity of...

    Text Solution

    |

  13. Find all point of discontinuity of the function f(t)=1/(t^2+t-2), wher...

    Text Solution

    |

  14. Show that the function f(x)=|sinx+cosx| is continuous at x=pi .

    Text Solution

    |

  15. Examine the differentiability of f, where f is defined by f(x) = {{:(...

    Text Solution

    |

  16. If f(x) = x^(2)sin'(1)/(x), where x ne 0, then the value of the functi...

    Text Solution

    |

  17. Examine the differentiability of f, where f is defined by f(x)={{:...

    Text Solution

    |

  18. Show that f(x)=|x-3| is continuous but not differentiable at x=3 .

    Text Solution

    |

  19. A function f: R->R satisfies that equation f(x+y)=f(x)f(y) for all ...

    Text Solution

    |

  20. Differentiate 2^(cos^(2)x)

    Text Solution

    |