Home
Class 12
MATHS
f(x) ={{:((2^(x+2)-16)/(4^(x)-16), if x ...

`f(x) ={{:((2^(x+2)-16)/(4^(x)-16), if x ne 2 ),(k, if x = 2):}` ,`x = 2`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( k \) such that the function \( f(x) \) is continuous at \( x = 2 \), we need to ensure that the limit of \( f(x) \) as \( x \) approaches 2 is equal to \( f(2) \). The function is defined as follows: \[ f(x) = \begin{cases} \frac{2^{(x+2)} - 16}{4^x - 16} & \text{if } x \neq 2 \\ k & \text{if } x = 2 \end{cases} \] ### Step 1: Calculate the limit as \( x \) approaches 2 We need to compute: \[ \lim_{x \to 2} f(x) = \lim_{x \to 2} \frac{2^{(x+2)} - 16}{4^x - 16} \] ### Step 2: Simplify the expression First, we notice that \( 4^x = (2^2)^x = 2^{2x} \). Thus, we can rewrite the limit as: \[ \lim_{x \to 2} \frac{2^{(x+2)} - 16}{2^{2x} - 16} \] Next, we can substitute \( 16 \) as \( 2^4 \): \[ \lim_{x \to 2} \frac{2^{(x+2)} - 2^4}{2^{2x} - 2^4} \] ### Step 3: Factor the numerator and denominator Both the numerator and denominator can be factored using the difference of squares: \[ \text{Numerator: } 2^{(x+2)} - 2^4 = 2^{(x+2)} - 2^{(2+2)} = (2^{(x+2)} - 2^4) = (2^{(x+2)} - 2^4) = (2^{(x+2)} - 2^4)(2^{(x+2)} + 2^4) \] \[ \text{Denominator: } 2^{2x} - 2^4 = (2^x - 4)(2^x + 4) \] ### Step 4: Substitute \( x = 2 \) Now we can evaluate the limit: \[ \lim_{x \to 2} \frac{(2^{(x+2)} - 16)(2^{(x+2)} + 16)}{(2^x - 4)(2^x + 4)} \] ### Step 5: Evaluate the limit Substituting \( x = 2 \): \[ \text{Numerator: } 2^{(2+2)} - 16 = 16 - 16 = 0 \] \[ \text{Denominator: } 2^2 - 4 = 4 - 4 = 0 \] Since both the numerator and denominator approach 0, we can apply L'Hôpital's Rule or simplify further. ### Step 6: Apply L'Hôpital's Rule Differentiating the numerator and denominator: 1. Differentiate the numerator: \[ \frac{d}{dx}(2^{(x+2)} - 16) = 2^{(x+2)} \ln(2) \] 2. Differentiate the denominator: \[ \frac{d}{dx}(4^x - 16) = 4^x \ln(4) \] Now we can evaluate the limit again: \[ \lim_{x \to 2} \frac{2^{(x+2)} \ln(2)}{4^x \ln(4)} \] Substituting \( x = 2 \): \[ = \frac{2^{(2+2)} \ln(2)}{4^2 \ln(4)} = \frac{16 \ln(2)}{16 \ln(4)} = \frac{\ln(2)}{\ln(4)} = \frac{\ln(2)}{2\ln(2)} = \frac{1}{2} \] ### Step 7: Set the limit equal to \( k \) Since \( f(x) \) is continuous at \( x = 2 \): \[ k = \lim_{x \to 2} f(x) = \frac{1}{2} \] Thus, the value of \( k \) is: \[ \boxed{\frac{1}{2}} \]

To find the value of \( k \) such that the function \( f(x) \) is continuous at \( x = 2 \), we need to ensure that the limit of \( f(x) \) as \( x \) approaches 2 is equal to \( f(2) \). The function is defined as follows: \[ f(x) = \begin{cases} \frac{2^{(x+2)} - 16}{4^x - 16} & \text{if } x \neq 2 \\ ...
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR|Exercise Application Of Integrals|68 Videos
  • DETERMINANTS

    NCERT EXEMPLAR|Exercise Determinants|58 Videos

Similar Questions

Explore conceptually related problems

f(x)={(2^(x+2)-16)/(4^(x)-16),quad if x!=2 and k, if x=2 at x=2

For what value of k, f(x)={((2^(x+2)-16)/(4^(x)-16)",", x ne 2),(k",", x =2):} is continuous at x = 2?

Let f(x) ={{:((x^(3)+x^(2)-16x+20)//(x-2)^(2)"," if x ne 2),(R", "if x = 2):} If f(x) is continuous for all x, then k = … .

prove that f(x) is a continuous funcation where f(x) {{:( (x^(4)-16)/(x-2)",", if , xne 2),( 32 ",", if , x =2):}

If f(x)={(2^(x+2)-16)/(4^(x)-16), if x!=2,k if x=2 is continuous at x=2, find k

f(x)={(2^(x+2)-16)/(4^(x)-16),quad if x!=2k,quad if x=2 is continuous at x=2, find k

If f(x) {:(=(x^(3)+x^2-16x+20)/((x-2)^(2)) ", if " x!= 2 ), (=k ", if " x = 2 ) :} is continuous at x = 2 , then

NCERT EXEMPLAR-CONTINUITY AND DIFFERENTIABILITY-Continuity And Differentiability
  1. f(x) = |x| + |x-1| at x = 1.

    Text Solution

    |

  2. f(x)={{:(3x-8, if x le 5),(2k, if x gt 5) :} at x = 5

    Text Solution

    |

  3. f(x) ={{:((2^(x+2)-16)/(4^(x)-16), if x ne 2 ),(k, if x = 2):} ,x = 2.

    Text Solution

    |

  4. f(x) = {{:((sqrt(1+kx)-sqrt(1-kx))/(x),if -1 le x lt 0),((2x+1)/(x-1...

    Text Solution

    |

  5. The value of k for which the function defined as f(x) = {{:((1-coskx)...

    Text Solution

    |

  6. Prove that the function f defined by f(x) = {{:((x)/(|x|+2x^(2)), if ...

    Text Solution

    |

  7. Find the values of a and b sucht that the function f defined by ...

    Text Solution

    |

  8. Given the function f(x)=1/(x+2) . Find the points of discontinuity of...

    Text Solution

    |

  9. Find all point of discontinuity of the function f(t)=1/(t^2+t-2), wher...

    Text Solution

    |

  10. Show that the function f(x)=|sinx+cosx| is continuous at x=pi .

    Text Solution

    |

  11. Examine the differentiability of f, where f is defined by f(x) = {{:(...

    Text Solution

    |

  12. If f(x) = x^(2)sin'(1)/(x), where x ne 0, then the value of the functi...

    Text Solution

    |

  13. Examine the differentiability of f, where f is defined by f(x)={{:...

    Text Solution

    |

  14. Show that f(x)=|x-3| is continuous but not differentiable at x=3 .

    Text Solution

    |

  15. A function f: R->R satisfies that equation f(x+y)=f(x)f(y) for all ...

    Text Solution

    |

  16. Differentiate 2^(cos^(2)x)

    Text Solution

    |

  17. Differentiate (8^(x))/(x^(8))

    Text Solution

    |

  18. Differentiate log(x+sqrt(a^2+x^2)) with respect to x :

    Text Solution

    |

  19. Differentiate log[log(logx^(5))]

    Text Solution

    |

  20. Differentiate sinsqrt(x) + cos^(2)sqrt(x)

    Text Solution

    |