Home
Class 12
MATHS
f(x) = {{:((sqrt(1+kx)-sqrt(1-kx))/(x),i...

`f(x) = {{:((sqrt(1+kx)-sqrt(1-kx))/(x),if -1 le x lt 0),((2x+1)/(x-1),if 0 le x le 1):}` at `x = 0`. f(x) is continuous then find k

Text Solution

AI Generated Solution

The correct Answer is:
To determine the value of \( k \) such that the function \( f(x) \) is continuous at \( x = 0 \), we need to ensure that the left-hand limit and right-hand limit at \( x = 0 \) are equal, and that they are equal to the value of the function at \( x = 0 \). The function is defined as: \[ f(x) = \begin{cases} \frac{\sqrt{1+kx} - \sqrt{1-kx}}{x} & \text{if } -1 \leq x < 0 \\ \frac{2x + 1}{x - 1} & \text{if } 0 \leq x \leq 1 \end{cases} \] ### Step 1: Find the Left-Hand Limit as \( x \to 0^- \) We need to compute: \[ \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} \frac{\sqrt{1+kx} - \sqrt{1-kx}}{x} \] Substituting \( x = 0 \) directly gives us: \[ \frac{\sqrt{1+0} - \sqrt{1-0}}{0} = \frac{1 - 1}{0} = \frac{0}{0} \] This is an indeterminate form, so we will rationalize the numerator. ### Step 2: Rationalizing the Numerator Multiply the numerator and denominator by the conjugate: \[ \frac{\sqrt{1+kx} - \sqrt{1-kx}}{x} \cdot \frac{\sqrt{1+kx} + \sqrt{1-kx}}{\sqrt{1+kx} + \sqrt{1-kx}} = \frac{(1+kx) - (1-kx)}{x(\sqrt{1+kx} + \sqrt{1-kx})} \] This simplifies to: \[ \frac{2kx}{x(\sqrt{1+kx} + \sqrt{1-kx})} \] ### Step 3: Simplifying the Expression Now we can cancel \( x \) from the numerator and denominator: \[ \lim_{x \to 0^-} \frac{2k}{\sqrt{1+kx} + \sqrt{1-kx}} \] As \( x \to 0 \): \[ \sqrt{1+kx} \to 1 \quad \text{and} \quad \sqrt{1-kx} \to 1 \] Thus, we have: \[ \lim_{x \to 0^-} \frac{2k}{1 + 1} = \frac{2k}{2} = k \] ### Step 4: Find the Right-Hand Limit as \( x \to 0^+ \) Now we compute: \[ \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{2x + 1}{x - 1} \] Substituting \( x = 0 \): \[ \frac{2(0) + 1}{0 - 1} = \frac{1}{-1} = -1 \] ### Step 5: Value of the Function at \( x = 0 \) From the definition of \( f(x) \) for \( 0 \leq x \leq 1 \): \[ f(0) = \frac{2(0) + 1}{0 - 1} = -1 \] ### Step 6: Setting the Limits Equal for Continuity For \( f(x) \) to be continuous at \( x = 0 \): \[ \lim_{x \to 0^-} f(x) = \lim_{x \to 0^+} f(x) = f(0) \] This gives us: \[ k = -1 \] ### Conclusion Thus, the value of \( k \) for which \( f(x) \) is continuous at \( x = 0 \) is: \[ \boxed{-1} \]

To determine the value of \( k \) such that the function \( f(x) \) is continuous at \( x = 0 \), we need to ensure that the left-hand limit and right-hand limit at \( x = 0 \) are equal, and that they are equal to the value of the function at \( x = 0 \). The function is defined as: \[ f(x) = \begin{cases} \frac{\sqrt{1+kx} - \sqrt{1-kx}}{x} & \text{if } -1 \leq x < 0 \\ \frac{2x + 1}{x - 1} & \text{if } 0 \leq x \leq 1 ...
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR|Exercise Application Of Integrals|68 Videos
  • DETERMINANTS

    NCERT EXEMPLAR|Exercise Determinants|58 Videos

Similar Questions

Explore conceptually related problems

If f(x) = {((sqrt(1+kx)-sqrt(1-kx))/(x), "if" -1 le x lt 0),((2x+k)/(x-1), "if" 0 le x le1):} is continuous at x = 0, then the value of k is

If f(x)= {{:((sqrt(1+kx)-sqrt(1-kx))/x", if "-1/2 lex lt 0),(2x^(2)+3x-2", if "0 le x le 1):} is continuous at x = 0 , then k = ….

Let f(x)={{:((sqrt(1+ax)-sqrt(1-ax))/x ,","-1 le x lt 0),((2x+1)/(x-2), "," 0 le x le 1):} The value of a so f is continuous on [-1,1] is

If f(x)={((sqrt(1+px)-sqrt(1-px))/(x) ",", -1 le x lt 0),((2x+1)/(x-2)",", 0 le x le 1):} is continuous in [-1,1] then p is equal to

If f(x)={((sqrt(1+kx)-sqrt(1-kx))/(x),",","for" -1 lex lt 0),(2x^(2)+3x-2,",","for" 0 le x le1):} is continuous at x=0 then find k

If f(x)= {{:((sqrt(1+lambdax)- sqrt(1 - lambdax))/(x) "," -1 le x lt 0 ),((2x + 1)/(x - 2) ", " - 0le x lt 1):} is continuous at x = 0 then lambda = ?

If f(x) = {{:((sqrt(4+ax)-sqrt(4-ax))/x,-1 le x lt 0),((3x+2)/(x-8), 0 le x le 1):} continuous in [-1,1] , then the value of a is

f(x)={((sqrt(1+px)-sqrt(1-px))/(x),,,-1 le x lt 0),((2x+1)/(x-2),,,0le x le 1):} is continuous in the interval [-1,1], then p equals :

NCERT EXEMPLAR-CONTINUITY AND DIFFERENTIABILITY-Continuity And Differentiability
  1. f(x)={{:(3x-8, if x le 5),(2k, if x gt 5) :} at x = 5

    Text Solution

    |

  2. f(x) ={{:((2^(x+2)-16)/(4^(x)-16), if x ne 2 ),(k, if x = 2):} ,x = 2.

    Text Solution

    |

  3. f(x) = {{:((sqrt(1+kx)-sqrt(1-kx))/(x),if -1 le x lt 0),((2x+1)/(x-1...

    Text Solution

    |

  4. The value of k for which the function defined as f(x) = {{:((1-coskx)...

    Text Solution

    |

  5. Prove that the function f defined by f(x) = {{:((x)/(|x|+2x^(2)), if ...

    Text Solution

    |

  6. Find the values of a and b sucht that the function f defined by ...

    Text Solution

    |

  7. Given the function f(x)=1/(x+2) . Find the points of discontinuity of...

    Text Solution

    |

  8. Find all point of discontinuity of the function f(t)=1/(t^2+t-2), wher...

    Text Solution

    |

  9. Show that the function f(x)=|sinx+cosx| is continuous at x=pi .

    Text Solution

    |

  10. Examine the differentiability of f, where f is defined by f(x) = {{:(...

    Text Solution

    |

  11. If f(x) = x^(2)sin'(1)/(x), where x ne 0, then the value of the functi...

    Text Solution

    |

  12. Examine the differentiability of f, where f is defined by f(x)={{:...

    Text Solution

    |

  13. Show that f(x)=|x-3| is continuous but not differentiable at x=3 .

    Text Solution

    |

  14. A function f: R->R satisfies that equation f(x+y)=f(x)f(y) for all ...

    Text Solution

    |

  15. Differentiate 2^(cos^(2)x)

    Text Solution

    |

  16. Differentiate (8^(x))/(x^(8))

    Text Solution

    |

  17. Differentiate log(x+sqrt(a^2+x^2)) with respect to x :

    Text Solution

    |

  18. Differentiate log[log(logx^(5))]

    Text Solution

    |

  19. Differentiate sinsqrt(x) + cos^(2)sqrt(x)

    Text Solution

    |

  20. Differentiate sin^(n)(ax^(2)+bx+c)

    Text Solution

    |