Home
Class 12
MATHS
Examine the differentiability of f, ...

Examine the differentiability of f, where f is defined by `f(x)={{:(1+x, if x le 2),(5-x,ifx gt 2):}` at `x = 2`.

Text Solution

Verified by Experts

The correct Answer is:
N/a

We have, `f(x)={{:(1+x, if x le 2),(5-x,ifx gt 2):}` at `x = 2`.
For differentiability at `x = 2`.
`Lf'(2) = underset(xrarr2^(-))(lim)(f(x)-f(2))/(x-2)=underset(xrarr2^(-))(lim)((1+x)-(1+2))/(x-2)`
`= underset(hrarr0)(lim)((1+2-h)-3)/(2-h-2) = underset(hrarr0)(lim)(-h)/(h) = 1`
`Rf'(2) = underset(xrarr2^(+))lim(f(x)-f(2))/(x-2)=underset(xrarr2^(+))lim((5-x)-3)/(x-2)`
`=underset(hrarr0)(lim)(5-(2+h)-3)/(2+h-2)`
`= underset(hrarr0)(lim) (5-2-h-3)/(h) = underset(hrarr0)(lim)(-h)/(+h)`
`= - 1`
`:' Lf'(2) = ne Rf'(2)`
So, `f(x) ` is not differentiable at `x = 2`.
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR|Exercise Application Of Integrals|68 Videos
  • DETERMINANTS

    NCERT EXEMPLAR|Exercise Determinants|58 Videos

Similar Questions

Explore conceptually related problems

Examine the differentiability of f , where f is defined by f(x) = {{:(x[x],if0lexlt2),((x-1)x,if2lexlt3):} at x = 2

Examine the differentiability of f, where f is defined by f(x) = {{:(x[x],if0lexlt2),((x-1)x,if2lexlt3):} at x = 2

f(x)={{:(3x-8, if x le 5),(2k, if x gt 5) :} at x = 5

f(x)={{:(3x-8, if x le 5),(2k, if x gt 5) :} at x = 5

f(x)={{:(x, if x le 1),(5, if x gt 1):} , then x=-1,x=0,and x=2 is

Is the function f defined by f(x)={{:(x, if x le 1),(5, if x gt 1):} continuous at x = 0? At x = 2 ?

If f(x)={{:(x, if x le 1),(5, if x gt 1):} , then x=0,x=1,and x=2 is

Examine the continuity of f ,where f is defined by f(x)={sin x-cos x,quad if x!=0;-1, if x=0

Examine the differentiability of the function 'f' defined by : f(x)={{:(2x+3",if "-3lexlt-2),(x+1",if "-2lexlt0),(x+2",if "0lexle1):} .

Discuss the continuity of the function f, where f is defined by f(x){{:(3"," if 0 le x le 1),(4"," if 1lt x lt 3 ),(5"," if 3 le x le 10):}