Home
Class 12
MATHS
Differentiate sinsqrt(x) + cos^(2)sqrt(x...

Differentiate `sinsqrt(x) + cos^(2)sqrt(x)`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = \sin(\sqrt{x}) + \cos^2(\sqrt{x}) \), we will apply the chain rule and the product rule where necessary. Let's break it down step by step. ### Step 1: Identify the function We have: \[ y = \sin(\sqrt{x}) + \cos^2(\sqrt{x}) \] ### Step 2: Differentiate \( \sin(\sqrt{x}) \) Using the chain rule: \[ \frac{d}{dx}[\sin(\sqrt{x})] = \cos(\sqrt{x}) \cdot \frac{d}{dx}[\sqrt{x}] \] Now, differentiate \( \sqrt{x} \): \[ \frac{d}{dx}[\sqrt{x}] = \frac{1}{2\sqrt{x}} \] Thus, \[ \frac{d}{dx}[\sin(\sqrt{x})] = \cos(\sqrt{x}) \cdot \frac{1}{2\sqrt{x}} = \frac{\cos(\sqrt{x})}{2\sqrt{x}} \] ### Step 3: Differentiate \( \cos^2(\sqrt{x}) \) Using the chain rule and the product rule: \[ \frac{d}{dx}[\cos^2(\sqrt{x})] = 2\cos(\sqrt{x}) \cdot \frac{d}{dx}[\cos(\sqrt{x})] \] Now, differentiate \( \cos(\sqrt{x}) \): \[ \frac{d}{dx}[\cos(\sqrt{x})] = -\sin(\sqrt{x}) \cdot \frac{d}{dx}[\sqrt{x}] = -\sin(\sqrt{x}) \cdot \frac{1}{2\sqrt{x}} \] So, \[ \frac{d}{dx}[\cos^2(\sqrt{x})] = 2\cos(\sqrt{x}) \cdot \left(-\sin(\sqrt{x}) \cdot \frac{1}{2\sqrt{x}}\right) = -\frac{\sin(\sqrt{x}) \cos(\sqrt{x})}{\sqrt{x}} \] ### Step 4: Combine the derivatives Now, we combine the derivatives from Steps 2 and 3: \[ \frac{dy}{dx} = \frac{\cos(\sqrt{x})}{2\sqrt{x}} - \frac{\sin(\sqrt{x}) \cos(\sqrt{x})}{\sqrt{x}} \] We can factor out \( \frac{1}{\sqrt{x}} \): \[ \frac{dy}{dx} = \frac{1}{\sqrt{x}} \left( \frac{\cos(\sqrt{x})}{2} - \sin(\sqrt{x}) \cos(\sqrt{x}) \right) \] ### Step 5: Simplify the expression We can rewrite the expression inside the parentheses: \[ \frac{dy}{dx} = \frac{1}{\sqrt{x}} \left( \frac{\cos(\sqrt{x}) - 2\sin(\sqrt{x}) \cos(\sqrt{x})}{2} \right) \] This can be expressed as: \[ \frac{dy}{dx} = \frac{1}{2\sqrt{x}} \left( \cos(\sqrt{x}) - 2\sin(\sqrt{x}) \cos(\sqrt{x}) \right) \] ### Final Answer Thus, the derivative of the function is: \[ \frac{dy}{dx} = \frac{1}{2\sqrt{x}} \left( \cos(\sqrt{x}) - 2\sin(\sqrt{x}) \cos(\sqrt{x}) \right) \] ---

To differentiate the function \( y = \sin(\sqrt{x}) + \cos^2(\sqrt{x}) \), we will apply the chain rule and the product rule where necessary. Let's break it down step by step. ### Step 1: Identify the function We have: \[ y = \sin(\sqrt{x}) + \cos^2(\sqrt{x}) \] ...
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR|Exercise Application Of Integrals|68 Videos
  • DETERMINANTS

    NCERT EXEMPLAR|Exercise Determinants|58 Videos

Similar Questions

Explore conceptually related problems

Differentiate sqrt(tan x)

differentiate sqrt(cos x)

differentiate sqrt(4+x^(2))

Differentiate sqrt(cotsqrt(x))

Differentiate (sqrt(x)-sqrt(a))/(sqrt(x+a))

Differentiate : sqrt(x)+sqrt(y)=sqrt(a)

Differentiate tan^(-1){(sqrt(1+x^(2))-sqrt(1-x^(2)))/(sqrt(1+x^(2))+sqrt(1-x^(2)))} with respect to cos^(-1)x^(2)

Differentiate wrt x (sqrt(x)+(1)/(sqrt(x)))^(5)

differentiate sqrt(a+sqrt(a+x^(2)))

Differentiate 2^(cos^(2)x)