Home
Class 12
MATHS
Differentiate sin^(n)(ax^(2)+bx+c)...

Differentiate `sin^(n)(ax^(2)+bx+c)`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = \sin^n(ax^2 + bx + c) \), we will use the chain rule and the power rule. Here is a step-by-step solution: ### Step 1: Identify the outer and inner functions The function can be expressed as: - Outer function: \( u^n \) where \( u = \sin(ax^2 + bx + c) \) - Inner function: \( u = \sin(v) \) where \( v = ax^2 + bx + c \) ### Step 2: Differentiate the outer function Using the power rule, the derivative of \( u^n \) with respect to \( u \) is: \[ \frac{du}{dx} = n u^{n-1} \cdot \frac{du}{dx} \] Substituting \( u = \sin(ax^2 + bx + c) \): \[ \frac{dy}{du} = n \sin^{n-1}(ax^2 + bx + c) \] ### Step 3: Differentiate the inner function Now we differentiate the inner function \( v = ax^2 + bx + c \): \[ \frac{dv}{dx} = \frac{d}{dx}(ax^2 + bx + c) = 2ax + b \] ### Step 4: Differentiate the sine function Next, we differentiate \( u = \sin(v) \): \[ \frac{du}{dv} = \cos(v) \] Substituting \( v = ax^2 + bx + c \): \[ \frac{du}{dv} = \cos(ax^2 + bx + c) \] ### Step 5: Apply the chain rule Now we apply the chain rule: \[ \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dv} \cdot \frac{dv}{dx} \] Substituting the derivatives we found: \[ \frac{dy}{dx} = n \sin^{n-1}(ax^2 + bx + c) \cdot \cos(ax^2 + bx + c) \cdot (2ax + b) \] ### Final Result Thus, the derivative of \( y = \sin^n(ax^2 + bx + c) \) is: \[ \frac{dy}{dx} = n \sin^{n-1}(ax^2 + bx + c) \cdot \cos(ax^2 + bx + c) \cdot (2ax + b) \]

To differentiate the function \( y = \sin^n(ax^2 + bx + c) \), we will use the chain rule and the power rule. Here is a step-by-step solution: ### Step 1: Identify the outer and inner functions The function can be expressed as: - Outer function: \( u^n \) where \( u = \sin(ax^2 + bx + c) \) - Inner function: \( u = \sin(v) \) where \( v = ax^2 + bx + c \) ### Step 2: Differentiate the outer function ...
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR|Exercise Application Of Integrals|68 Videos
  • DETERMINANTS

    NCERT EXEMPLAR|Exercise Determinants|58 Videos

Similar Questions

Explore conceptually related problems

Differentiate x sin x

Differentiate sin^(2) (2x+3)

Differentiate sin^(m)x*cos^(n)x

Differentiate sinx sin 2x

Differentiate y=(sin x)^(2)

Differentiate sin(x^(2)+x)w.r.t.x

Differentiate e^(ax) cos(bx + c) .

Differentiate x^(x)+(sin x)^(x)

Differentiate x^(x)+(sin x)^(x)

Differentiate sin(x^2) with respect to x.