Home
Class 12
MATHS
Differentiate (x+1)^(2)(x+2)^(3)(x+3)^(4...

Differentiate `(x+1)^(2)(x+2)^(3)(x+3)^(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = (x+1)^2 (x+2)^3 (x+3)^4 \) with respect to \( x \), we can use logarithmic differentiation for simplicity. Here are the steps: ### Step 1: Take the logarithm of both sides Start by taking the natural logarithm of both sides: \[ \ln y = \ln \left( (x+1)^2 (x+2)^3 (x+3)^4 \right) \] ### Step 2: Apply the properties of logarithms Using the property of logarithms that states \( \ln(a \cdot b) = \ln a + \ln b \), we can expand the right-hand side: \[ \ln y = \ln (x+1)^2 + \ln (x+2)^3 + \ln (x+3)^4 \] Now applying the power rule of logarithms \( \ln(a^b) = b \ln a \): \[ \ln y = 2 \ln (x+1) + 3 \ln (x+2) + 4 \ln (x+3) \] ### Step 3: Differentiate both sides Now, differentiate both sides with respect to \( x \): \[ \frac{d}{dx}(\ln y) = \frac{d}{dx}(2 \ln (x+1) + 3 \ln (x+2) + 4 \ln (x+3)) \] Using the chain rule on the left side: \[ \frac{1}{y} \frac{dy}{dx} = 2 \cdot \frac{1}{x+1} \cdot \frac{d}{dx}(x+1) + 3 \cdot \frac{1}{x+2} \cdot \frac{d}{dx}(x+2) + 4 \cdot \frac{1}{x+3} \cdot \frac{d}{dx}(x+3) \] This simplifies to: \[ \frac{1}{y} \frac{dy}{dx} = \frac{2}{x+1} + \frac{3}{x+2} + \frac{4}{x+3} \] ### Step 4: Solve for \( \frac{dy}{dx} \) Now, multiply both sides by \( y \) to isolate \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = y \left( \frac{2}{x+1} + \frac{3}{x+2} + \frac{4}{x+3} \right) \] Substituting back the expression for \( y \): \[ \frac{dy}{dx} = (x+1)^2 (x+2)^3 (x+3)^4 \left( \frac{2}{x+1} + \frac{3}{x+2} + \frac{4}{x+3} \right) \] ### Final Result Thus, the derivative of the function \( y = (x+1)^2 (x+2)^3 (x+3)^4 \) with respect to \( x \) is: \[ \frac{dy}{dx} = (x+1)^2 (x+2)^3 (x+3)^4 \left( \frac{2}{x+1} + \frac{3}{x+2} + \frac{4}{x+3} \right) \]

To differentiate the function \( y = (x+1)^2 (x+2)^3 (x+3)^4 \) with respect to \( x \), we can use logarithmic differentiation for simplicity. Here are the steps: ### Step 1: Take the logarithm of both sides Start by taking the natural logarithm of both sides: \[ \ln y = \ln \left( (x+1)^2 (x+2)^3 (x+3)^4 \right) \] ...
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR|Exercise Application Of Integrals|68 Videos
  • DETERMINANTS

    NCERT EXEMPLAR|Exercise Determinants|58 Videos

Similar Questions

Explore conceptually related problems

Differentiate (3x^(2)+4x-5)/(x)

Differentiate (x^(2)(1-x^(2))^(3))/(cos2x) with respect to x

Differentiate sin^(2) (2x+3)

Differentiate x^(2)+y^(2)-3xy=1

Differentiate ((x^(2) sinx)/(1-x))

Differentiate sqrt(((x-1)(x-2))/((x-3)(x-4)(x-5))) with respect to x

Differentiate f(x) = (x+2)^(2/3) (1-x)^(1/3) w.r.t. x

Differentiation of (2x-7)^(2)(3x+5)^(3)

differentiate (2)/(x+1)-(x^(2))/(3x-1)

Differentiate w.r.t.x(2x+1)^(3)

NCERT EXEMPLAR-CONTINUITY AND DIFFERENTIABILITY-Continuity And Differentiability
  1. (sinx)^(cosx)

    Text Solution

    |

  2. Differentiate sin^(m)x*cos^(n)x

    Text Solution

    |

  3. Differentiate (x+1)^(2)(x+2)^(3)(x+3)^(4)

    Text Solution

    |

  4. Simplify: cos^(-1)((sinx+cosx)/(sqrt(2))),\ \ pi/4<x<(5pi)/4

    Text Solution

    |

  5. Differentiate tan^(-1){sqrt((1-cosx)/(1+cosx))},\ -pi<x<pi with respec...

    Text Solution

    |

  6. Differentiate tan^(-1)(secx+tanx) , -pi/2<x<pi/2 with respect to x :

    Text Solution

    |

  7. Differentiate the following functions with respect to x : tan^(-1)(...

    Text Solution

    |

  8. Differentiate cos^(-1)(4x^3-3x) with respect to x , if x in (1/2,\ 1)

    Text Solution

    |

  9. Differentiate tan^(-1)((3a^2x-x^3)/(a^3-3a x^2)),\ -1/(sqrt(3))<x/a<1/...

    Text Solution

    |

  10. y=tan^(-1)((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2))),w h e ...

    Text Solution

    |

  11. If x=a(t+1/t) and y=a(t-1/t) , prove that (dy)/(dx)=x/y

    Text Solution

    |

  12. Find (dy)/(dx) , when x=e^(theta)(theta+1/theta) and y=e^(-theta)(thet...

    Text Solution

    |

  13. If x=3costheta-cos^3theta y=3sintheta-sin^3theta find dy/dx

    Text Solution

    |

  14. If sinx=(2t)/(1+t^2) , tany=(2t)/(1-t^2) , find (dy)/(dx) .

    Text Solution

    |

  15. If x=(1+logt)/(t^2),\ \ y=(3+2logt)/t ,\ \ find (dy)/(dx) .

    Text Solution

    |

  16. If x=e^(cos2t) and y=e^(sin2t) , prove that (dy)/(dx)=-(ylogx)/(xlogy)

    Text Solution

    |

  17. If x=asin2t(1+cos2t) and y=bcos2t(1-cos2t) , show that at t=pi/4 , (dy...

    Text Solution

    |

  18. If x=3sint-sin3t , y=3cost-cos3t , find (dy)/(dx) at t=pi/3 .

    Text Solution

    |

  19. Differentiate (x)/(sinx) w.r.t . sinx.

    Text Solution

    |

  20. Differentiate tan^(-1)((sqrt(1+x^2-1))/x)wdotrdotttan^(-1)x ,w h e r e...

    Text Solution

    |